
Annals of Science and Technology - A, Vol 7 (1): xx-xx, 2022
Copyright: An Official Journal of the Nigerian Young Academy
ISSN: 2 544 6320

ARTICLE

An Evaluation of a Language Processor for an African Native Language-
based Programming Language

Ezekiel K. Olatunji1*, Stephen O. Olabiyisi2, John B. Oladosu2, Odetunji A. Odejobi3

1Department of Computer Science, Bowen University, Iwo, Osun State, Nigeria
2Department of Computer Science and Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
3Department of Computer Science and Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria

Received 27th November, 2021, Accepted 3rd April, 2022
DOI: 10.2478/ast-2022-0001

*Corresponding author
Ezekiel K. Olatunji E-mail: aekolatunji@gmail.com

Tel: +234(0)8038580770

Abstract

The design and prototype implementation of a subset of an African indigenous language-based programming

language has been carried out and reported. In this study, an evaluation of the processor developed for the native

language-based programming language was carried out in order to assess its level of conformance to the

characteristics required of a good software product as set by the international organization for standardization (ISO).

The developed language processor was evaluated using some metrics for evaluating the quality of software systems

including structural and time complexity. A usability test was also conducted to assess users' perception of the

system concerning its relevance and ease of use. The result of the system evaluation indicated that the system

contains 1558 lines of code, its cyclomatic complexity is 14 and its asymptotic time complexity is of order big oh O

(n3), where n is the size of the input to the system. Over 86% of the participants in the usability test attested to the

system's relevance while the usability rating was 86%. The developed system can be inferred to be of good quality

as the results of its evaluation are positively on the high side for satisfying most of the ISO criteria for adjudging a

software product as being of good quality. Furthermore, the high usability rating for the system indicates that the

programming language whose compiler was evaluated satisfies most of the criteria set by the Department of Defense

(DOD) for assessing the ‘goodness’ or otherwise of a programming language.

Keywords: Language processor; Lexical item; Native language-based programming language; Software
evaluation; Software product metrics.

 ©2022 Olatunji et al. This work is licensed under the Creative Commons Attribution-Non-Commercial-NoDerivs License 4.0

This journal is © The Nigerian Young Academy 2022 Annals of Science and Technology 2022 Vol. 7 (1) xx-xx | x

mailto:aekolatunji@gmail.com

Olatunji et al., 2022 An Evaluation of a Language Processor

1.0 Introduction

A subset of a computer programming language (PL) based on the

lexicons of an African indigenous language, specifically the Yoruba

language, has been developed. Its design, as well, as its prototype

implementation has been reported (Olatunji, et al., 2018; Olatunji et al.,

2019a; Olatunji et al., 2021). More than 30 million people in Nigeria,

Africa have Yoruba as their first language, while the language is spoken

by more than one hundred million people throughout the world

(Eludiora, et al., 2015).

An important rationale for developing the PL is to show that lexical

items of PLs can also be adopted from the words of indigenous African

languages like the words of English and Asian languages. According to

Olatunji et al. (2018), the development of PLs based on the lexicons of

African indigenous languages will improve computer-based problem-

solving processes by indigenous teachers and learners. This has also

been shown by other research studies (Silva et al., 2020; Olatunji et al.,

2019b; UNESCO 2007; Pflepsen 2011).

The developed programming language is a structured and compiled

language with syntax similar to that of traditional BASIC. The processor

developed for the PL is a compiler and was designed to consist of five

(5) components: scanner, information table, parser, semantic analyzer,

and code generation. Besides these components, three (3) other utility

programs were developed in the system to enable a user/programmer

to create, compile and run programs in the programming language.

These utility programs are YorCompilerMain, YorC-KodeGen, and

Yoreditor. In this study, the developed processor for the native

language-based programming language (NLPL) was evaluated to

assess the level of compliance with the characteristics required of a

good software product as set by the International Organization for

Standardization (Rick-Rainer 2013).

1.1 Concept of software evaluation

Software evaluation, also sometimes called software metrics, has to do

with the assessment of a software product and the process by which it

is being developed. Software metrics provide quantitative methods for

assessing the quality of software (Debbama et al., 2013). The

Evaluation of software helps in understanding, controlling, and

improving the software development processes and the resulting

software product (Singh et al., 2008). According to Jah (2008), the

knowledge and information obtained from software evaluation can be

used to manage and control the development process which will

eventually lead to improvement of the resulting software product.

Software evaluation is broadly divided into two categories: software

process evaluation and software product evaluation.

1.1.1 Software process evaluation

Software process refers to a set of activities that are partly ordered and

carried out to manage, develop and maintain software systems. It

centres on the development process rather than the product's output

(Acuna and Juristo, 2005). Software process evaluation involves

analyzing the activities that are undertaken in an organization to

produce a software system. The utmost aim of process evaluation is to

improve the quality of software products (Acuna and Juristo 2005).

Software process metrics describe the effectiveness and quality of the

process that produced the software product. These include effort, time,

and the number of times defects were found during testing (Singh et al.,

2008). Software process evaluation is not further described beyond

this point in this paper as it is not the focus of this research.

1.1.2 Software product evaluation

Software product evaluation, the focus of this paper, can be described

as the assessment of the quality characteristics of a software product

(Trendowicz and Punter 2008). Software product evaluation addresses

and assesses the quality of a software product. The international

organization for standardization (Rick-Rainer 2013) describes six

quality characteristics of a software product. These are functionality,

reliability, usability, efficiency, maintainability, and portability (Jah

2008). The degree to which a software product complies with these

quality characteristics will be the degree of its quality rating by

customers.

This paper reports on the outcome of the evaluation of the processor

developed for the PL using standard metrics for evaluating the quality

of software systems. The paper is organized into sections. Section two

is on the review of the literature and related work. The third section

hints at the methodology employed for the research. Discussion on the

results obtained is provided in section four, while the last section is on

the findings of the research.

2.0 Review of literature and related work

Software evaluation is an important aspect of software engineering

(Awan et al., 2015) whose ultimate goal is to find methods used for

developing high-quality software products at a reasonable cost (Sacha

2005). Thus the quality of a software product is a key factor and plays

a crucial role in business success (Alnanseri 2020). Software quality, as

cited by Madadipouya (2018) is defined by Sacha (2005) as consisting

of two things: conformance to specifications and meeting customer

needs. Many metrics exist for measuring the quality of a software

system.

2.1 Review of related work

Some scholars have worked on the evaluation of software products and

software processes. Molner et al (2020) carried out a comprehensive

evaluation of software metrics that are widely associated with software

product quality. A study in software quality assurance in the case of a system

called Therac-25 was carried out by Madadipouya (2018). Therac-25 is a

linear medical accelerator that was used to treat cancer patients of different

types. The paper pointed out that the lack of proper deployment of software

quality assurance was the cause of many incidents in the system. Debbama

et al (2013) carried out a review and analysis of software complexity

metrics in structured testing. The work presented an analysis by which

developers and testers can minimize software development costs as well as

improve testing efficacy and quality. A brief overview of software quality,

software metrics, and software metrics methods that could be used to

predict and measure

X |This journal is © The Nigerian Young Academy 2022 Annals of Science and Technology 2022 Vol. 7 (1) xx-xx

Olatunji et al., 2022 An Evaluation of a Language Processor

specific quality characteristics of software was provided by Jah (2008). In

his work, a sample program developed in Java was evaluated using three

software product metrics: size metric, complexity, and defect metrics. Sacha

(2005) described a method that was used to evaluate the expected as well

as the actual quality of a huge software that was developed in the year 2003

– 2004 to support the Common Agriculture Policy of the European Union in

Poland. Recommendations on what to do to enhance the quality of the

product were also provided.

2.2 Review of software system evaluation metrics

Many metrics have been used in evaluating a software system. These

include but are not limited to product size, cyclomatic complexity, time

complexity, usability, mean time between failure (MTBF), mean time to

recover / repair (MTTR) and application crash rate (Olatunji 2019). Only

the ones employed in this research are briefly reviewed here.

2.2.1 Product size

The product size metric is one of the most widely used metrics for

evaluating a software product (Singhal et al., 2014) while a count of

source lines of code (SLOC) has been the most commonly used size

metric. The SLOC is a software metric used to measure the size of a

computer program by counting the number of lines in the text of a

program’s source code. It is sometimes expressed as kilo lines per code.

SLOC is typically used to predict the amount of programming effort

that would be required to develop a program as well as to estimate the

programming productivity and /or maintainability once the program

is produced. In general, SLOC is calculated as the total lines of the

source code excluding the blank and comment lines

2.2.2 Cyclomatic complexity

Another commonly used metric to evaluate a software product is the

cyclomatic complexity which measures the structural complexity of

the software. The metric measures independent paths through a

source code (Stein et al., 2005). The metric was developed by Thomas

McCabe in 1976 (Fleck 2007). The metric can informally be described

as the number of decision points plus one (Fleck 2007).

Formally, the metric is based on a control flow representation of the

program. Control flow depicts a program as a graph that consists of

nodes and edges. In a graph, nodes represent processing tasks, while

edges represent control flow between the nodes. Mathematically, the

complexity of a program can be defined (Olabiyisi 2005) as:

 𝑉(𝐺) = 𝐸 − 𝑁 + 2

where E is the number of edges and N is the number of nodes.

Alternatively, the cyclomatic complexity of a program can be defined

as:

 𝑉(𝐺) = 𝑃 + 1

where P is the number of predicate nodes (node that contains
conditions). McCabe’s recommendation is that a program being
developed should be split into smaller modules if its cyclomatic
complexity is more than 10.

At a later time, however, the National Institute of Standards and

Technology (NIST) recommended that, in some circumstances, a

cyclomatic complexity of up to 15 is acceptable (Jones and Hogenson

2021).

2.2.3 Time complexity

The time and memory space used by an algorithm/program are the two

measures of the efficiency of the program/algorithm. More commonly

the time required for executing an algorithm/ program is used to

determine the efficiency or time complexity of the algorithm/program.

In the analysis of an algorithm, the worst-case running time is usually

estimated as the function of the input size. The time complexity of an

algorithm M is the function f(x) which gives the running time of the

algorithm in terms of the size x of the input data (Lipschutz and Lipson

2007). In general, it is the function that gives the worst-case running

time of the algorithm in terms of the size of the input. The running time

for an algorithm/program can be estimated using the method of

asymptotic analysis (Olabiyisi 2005) and expressed with the big O-

notation without having to implement the algorithm (Cormen, et al.,

2009).

Asymptotic analysis is a technique used to estimate the running time

complexity of an algorithm as its input size tends to infinity. An

algorithm's growth rate or running time is usually approximated to a

function that can be linear, quadratic, logarithmic, or even exponential.

In general, an algorithm with the big-O notation of order O(log n) is

faster than the one with O(n); likewise, the one with O(n) is more

efficient than the one with O(n2), where n is the input size (Cormen, et

al., 2009).

2.2.4 Usability Test Rating

Usability testing refers to an assessment of a product or service by

testing it with prospective representative users. The test describes the

level of ease with which a product like the one being reported can be

used by the audience for which the system was developed. According

to Okhovati et al (2016), usability testing is the second most used

evaluation research method and the method that has the greatest

impact in making products better. In usability testing, participants are

requested to make use of the developed system and provide an

assessment of their perception of the system. The participants

represent "real users", doing the "real thing"; after which they can

provide an assessment of their perception of the system.

3.0 Methodology

The evaluation of the developed Yoruba-based PL was carried out by

using quantitative and qualitative metrics., The system was evaluated

using software product metrics in the quantitative approach;,

specifically size and complexity. In the qualitative approach, the system

was evaluated by conducting usability testing to assess users'

perception of the system concerning its relevance and ease of use.

3.1 Product size metric

The product size metric used for evaluating the developed Yoruba-

based compiler is the count of the source lines of code (SLOC) described

in Section 2.2.1.

X |This journal is © The Nigerian Young Academy 2022 Annals of Science and Technology 2022 Vol. 7 (1) xx-xx

Olatunji et al., 2022 An Evaluation of a Language Processor

The size of the system developed in this research was obtained by summing

up the SLOC of all the functions and modules in the system. The SLOC for

each module within each of the six main programs has been calculated by

subtracting the blank and comment lines from the total source lines.

3.2 Cyclomatic complexity metric

Another quantitative metric used for evaluating the developed system

is the cyclomatic complexity described in Section 2.2.2. While it is

possible to compute the cyclomatic complexity of a program by using

such tools as Cyvis (Jah, 2008), in this research, cyclomatic complexity

was computed manually.

3.3 Time complexity metric

The developed system was also evaluated using the time complexity

described in section 2.2.3. The method of asymptotic analysis was used

in estimating the time complexity of the developed Yoruba-based

programming language

3.4 Usability testing

The developed Yoruba-based compiler system was also evaluated by

conducting a usability test. The goal of conducting this test is to

evaluate the developed programming language (PL) and its compiler

in terms of usability as well as the relevance and usefulness of the

system relative to similar English-based PLs, such as BASIC, FORTRAN,

and others. The selected audience for the test was requested to write

simple but meaningful programs in the developed PL and then make a

comparison with their experience in some similar English-based PL

with which they are satisfactorily familiar. The comparison was made

in terms of the following criteria:

• Ease of understanding the PL’s Syntax and semantics

• Ease of use (in programming)

• User-friendliness of the user interfaces of the IDE

• Efficacy / Effectiveness/ usableness

• Relevance / Usefulness

Most of these criteria are also part of the US, Department of Defense

(DOD)’s criteria for assessing and adjudging a programming language

to be of good quality as far back as 1978 (Chen et al., 2005; Sebesta

2012).

Participants in the usability test comprised seven (7) computer

science students in a private University: one female and six males; one

300 Level and six 400 Level students. Usability testing experts like

Jakob Nielson, as quoted by McCraken (2016), recommended that 5-8

participants are sufficient for the test as they will provide 80% -95%

of the usability issues of the system. Six (6) out of seven (7) of the

participants were in the last semester of their graduating year and

were also good in programming in some of the English-based PLs like

Java and C++.

Furthermore, all the participants were fluent in spoken Yoruba and the

user operating manual provided during the test was simple enough for

all of them to comprehend the syntax and semantics of the Yoruba-

based PL These participants were made to write, compile and run two

simple programs in the programming language and then to assess the

programming language and its compiler by completing a usability

assessment questionnaire. In the questionnaire, participants were

required to assess the Yoruba-based programming language based on

the criteria specified above using a Likert scale of 1 to 5, where 1 is the

least and 5 is the highest.

3.5 Sufficiency of the employed metrics

It is to be remarked that the evaluation metrics employed in this work as

explained in section two are adequate in assessing the programming

language and its processor. First, the developed system has been tested and

reported to satisfy its functional requirements (Olatunji et al., 2021). This is

also confirmed by the outcome of the usability test as will be seen in section

four. Functionality is a major requirement of a good software product

according to ISO standards (Rick-Rainer 2013). Secondly, cyclomatic

complexity deals with the structural complexity of the system. It is a

measure of the testability as well as the ease of maintainability of a system.

By ISO standards, ease of maintainability ranks high among the qualities and

requirements of a good software. An acceptable level of maintainability has

been benchmarked by NIST (Jones and Hogenson 2021).

Usability testing measures the relevance, usefulness as well as ease of

use of a system. This factor is also one of the quality characteristics of a

software product as per ISO standards. Furthermore, as earlier alluded

to, usability testing is the second most used evaluation research

method. In addition, most of the qualities of the PL required to be

assessed by participants in the usability test are part of the criteria set

out in 1978 by the US, Department of Defense (DOD), Washington DC

(Chen et al., 2005; Sebesta 2012) to be met by a good PL. The DODs

criteria have since been a reference for PL evaluation.

4.0 Results and Discussion

The results obtained from the evaluation of the system are presented

in this section.

4.1 Result of SLOC computation

The summary of the SLOC computed for the system is shown in Table 1.
The SLOC metrics represent the size of the system developed as well as the

sizes of each of the main program components of the system. As can be

observed in Table 1, the total actual source lines of code (SLOC) is 1558. This

indicates the non-triviality of the programming effort involved in

developing the system; more so that only a few constructs were used for

prototype implementation. Apart from the main module of the scanner,

whose cyclomatic complexity is 1 all other modules have their SLOC to be

less than 60, which is the commonly recommended size of a good program

module (Jones and Hogenson 2021).

4.2 Result of evaluating cyclomatic complexity of the system

The calculated results of cyclomatic complexity for the system are

shown in Table 2. The module with the highest cyclomatic complexity

in a program determines the cyclomatic complexity of the program.

X |This journal is © The Nigerian Young Academy 2022 Annals of Science and Technology 2022 Vol. 7 (1) xx-xx

Olatunji et al., 2022 An Evaluation of a Language Processor

From Table 2, the cyclomatic complexity of the system is 14, which is

the cyclomatic complexity of the Semantic Checker component of the

system because the semantic checker has the highest cyclomatic

complexity.

According to the recommendation of MacCabe (Olabiyisi 2005), the

system can be said to be moderately well structured, have moderate

complexity and medium testability with moderate cost and effort.

Going by McCabe's earlier recommendation that case statements

should be exempted from the complexity of a program module (Jones

and Hogenson 2021), the cyclomatic complexity of the semantic

checker and those of other main components of the developed system

is far less than 10, the acceptable degree of structural complexity. Thus

by these recommendations, the developed system can be said to be

well-written and structured, have high testability and requires low

maintainability cost and effort. Furthermore, according to the later

recommendation of NIST (Jones and Hogenson 2021) that cyclomatic

complexity of up to 15 is acceptable, the developed system is very well

structured and written, has high testability and requires less effort and

cost in maintaining it.

4.3 Result of evaluating the time complexity of the system

The asymptotically estimated worst-case running time complexities for the

program components of the system are as shown in Table 3. The module

with the highest asymptotic value determines the time complexity of a

program component, while the program that has the highest asymptotic

value determines the time complexity of the system. From Table 3, the

worst-case running time complexity of the developed system is of order

O(N3), where N is the size of the input to the system. This is the worst-case

running time of both the scanner and the parser. The big O-notation is used

to describe the asymptotic upper bound of the size of the input to the

system. This time complexity agrees with Earley Jay's algorithm as cited by

Tomita (2013).

4.4 Result of usability testing

In the questionnaire, participating users were made to provide a candid

assessment of the programming language and its compiler by rating the

language on the six criteria shown in the second column of Table 4. on a

Likert scale of 1 to 5 where 5 is the highest and 1 the least. Furthermore, 5,

4, 3, 2, and 1 respectively stand for very good, good, average, poor and very

poor. It is to be remarked that assessment criteria 1, 2 and 3 measure the

system's ease of use, criteria 5 and 6 measure the system's degree of

relevance, while criterion 4 measures the system's performance in terms of

speed of programming. The result of the responses of the users is contained

in Table 4.

From the result of the analysis in Table 4., and the users' perception of

the system, the programming language's syntax and semantics are very

easy to understand (because 100% of the participants attested to this);

easy to use for programming and its user interface is moderately user-

friendly (as indicated by 86% of the participants). Furthermore, the

programming language and its compiler are also usable and effective

(as attested to by 86% of the participants) while the programming

language is very much desired as indicated by 100% of the

participants. These percentages are the sum of ‘very good’ and ‘good’

responses.

Table 1: Summary of SLOC metric for the Yoruba Compiler

S/No Program Number Total Total Total
 Name of SLOC Comment Actual
 Modules in and SLOC
 QB64 blank

 Editor Lines

1 Yoruba Compiler 6 147 37 110
 IDE

2. Scanner 17 478 147 331

3. Parser 13 573 131 442

4. Info Table 5 291 78 213
 Builder

5. Semantic checker 8 418 109 309

6. Code Generator 9 197 61 136

7. YorubaC_KodeGen 1 17 5 12

8. YorubaEditor 1 11 6 5

 Total 60 2132 574 1558

Table 2: Summary of Cyclomatic complexity for the Yoruba Compiler

 S/No Program Name Highest Cyclomatic
 Complexity

 1 Yoruba Compiler IDE 5
 2. Scanner 9
 3. Parser 12
 4. Info Table Builder 10
 5. Semantic checker 14
 6. Code Generator 9
 7. YorubaC_KodeGen 1
 8. YorubaEditor 1

 Table 3: Summary of Time Complexity for the Yoruba Compiler
 S/No Program Name Highest Asymptotic
 value in terms of big
 O-notation

 1. Yoruba Compiler IDE N

 2. Scanner N3

 3. Parser N3

 4. Info Table Builder N2

 5. Semantic checker N2

 6. Code Generator N2

 7. YorubaC_KodeGen 1

 8. YorubaEditor 1

X |This journal is © The Nigerian Young Academy 2022 Annals of Science and Technology 2022 Vol. 7 (1) xx-xx

 Olatunji et al., 2022 An Evaluation of a Language Processor

Table 4: Result of Users’ Evaluation of the Developed System

S/No Criteria / 5 4 3 2 1 Response Response

 Likert Items Very Good Average Poor Very Mean Mode

 Good Poor

1. Ease of 5 2

 understanding 71% 29% - - - 4.71 5

 The PL’s

 Syntax and

 semantics

2. Ease of using 4 2 1

 the system for 57% 29% 14% - - 4.43 5

 programming

3. User- 3 3 1 - -

 friendliness of 43% 43% 14% 4.28 5

 The user

 interfaces

4. Performance 1 4 2

 (in terms of 14% 57% 29% - - 3.86 4

 Speed of

 programming)

5. Efficacy / 4 2 1 - -

 Effectiveness/ 57% 29% 14% 4.43 5

 usability

6. Usefulness / 6 1 - - -

 Relevance of 86% 14% 4.86 5

 the PL

5.0 Conclusion
Based on the metrics used for evaluating the developed system and the

results obtained as discussed in section IV, it can be inferred that the

developed system is good. This is because the system sufficiently satisfies

most of the criteria for adjudging a software product as being good,

especially the criteria set by ISO standards. For example, cyclomatic

complexity, which among other things, measures the ease of maintaining

a system is 14. This value is within the acceptable level of maintainability

as benchmarked by NIST. Furthermore, the high usability rating

expressed by the participants of the usability test (86% both for ease of

programming and user-friendliness of the system’s user interface)

confirms that the PL is well-defined (syntactically and semantically),

expressive, satisfactorily orthogonal and very pedagogical. These are

some of the criteria set by the Department of Defense (DOD), Washington

DC for assessing whether a PL is good or not (Chen et al., 2005). For

future work, the developed language processor, like any other software

product, could be evaluated on other software product metrics such as

mean-time between failure (MTBF), meantime time to recover (MTTR)

and application crash rate (Olatunji 2019). Other metrics include

Halstead software science, maintainability index (Molner et al., 2017)

and others.

Conflicts of Interest
All authors have declared that there are no conflicts of interest.

Individual Authors Contribution
Conception; [E.K.O, J.B.O, S.O.O]
Design: [E.K.O, J.B.O, O.A.O]
Execution: [E.K.O]
Interpretation: [E.K.O, J.B.O, O.A.O, S.O.O]
Writing the Paper: [E.K.O]

References
Acuna, S.T. and Juristo, N. (2005). Software Process Modelling,

Boston, Springer, 2005, pp 111-139 DOI: https://doi.org/10.1007

/b104986

Alnanseri, M. (2020). User Authentication in Public Cloud

Computing Through Adoption of Electronic Personal Synthesis

Behaviour. PhD Thesis, , http://doi.org/10.13140 /RG.2.235475
.71202

Awan, S., Malik F., and Javed, A. (2015). An Efficient and Objective
Generalized Comparison Technique for Software Quality Models. In:
International Journal of Modern Education and Computer Science,
7(2); 57-64. https://doi.org/10.5815/ijmecs.2015.12.08

This journal is © The Nigerian Young Academy 2022 Annals of Science and Technology 2022 Vol. 7(1) xx-xx | x

http://doi.org/10.13140%20/RG.2.235475
https://doi.org/10.5815/ijmecs.2015.12.08

Olatunji et al., 2022 An Evaluation of a Language Processor

Chen, Y; Dios, R., Mili, A. and Wu, L. (2005). An Empirical Study of

Programming Language Trends, IEEE SOFTWARE, IEEE Computer

Society, 22(3); 72-79. DOI: https://doi.org/10.1109/MS.2005.55

Available online at www.computer.org/software. Retrieved on 17-

04-2014

Cormen, T.H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2009).

Introduction to Algorithms, 3ed, Massachusetts, The MIT Press, pp

30–35

Debbama, M.K., Debbama, S., Debbama, N., Chakma, K., and Jamatia,

A. (2013). A Review and Analysis of Software Complexity Metrics in

Structural Testing. International Journal of Computer and

Communication Engineering, 2(2);129-133. https://doi.org/10/77

63/IJCCE.2013.v2.154

Eludiora, S.I., Agbeyangi, A.O. and Fatusin, O. I. (2015).

Development of English to Yoruba Machine Translation System for

Yoruba verbs' Tone Changing. International Journal of Computer

Applications, 129(10);12-17.

Fleck, D. (2007). Cyclomatic Complexity. Available online at

http://cs.gmu.edu/~dfleck/ Retrieved on 02-02-2018

Jah, M. (2008). Software Metrics – Usability and Evaluation of

Software Quality. M.Sc.Thesis, Department of Technology,

Mathematics and Computer Science, University West, SWEDEN, pp

95-101.Retrieved on 02-02-2018 from https://pdfs.semantic

scholar.org/

Jones, M. and Hogenson, G. (202)1. Code Metrics – Cyclomatic

Complexity. Retrieved on 14-03-2022 from https://docs.microsoft

.com

Lipschutz, S and Lipson, M. (2007). Discreet Mathematics, New

York, Mcgraw-Hill Companies, Inc, ISBN 978-0-07-161586-

0[LLVM], pp 605 http://llvm.org/ Retrieved 11-02-2015

Madadipouya, K. (2018). Importance of Software Quality

Assurance to Prevent and Reduce Software Failures in Medical

Devices: Therac-25 Case Study, pp 1-18. https://doi.org/10.6084

/m9.figshare.3362281/5

McCraken, C. (2016). How to conduct Usability Testing from Start

to Finish. Retrieved online from http://uxmastery.com/ on 24-05 -

2017.

Molnar, A J., Neamtu A., Motogna S. (2020). Evaluation of Software

Product Quality Metrics. In: Damiani E., Spanoudakis G., and

Macaszek L. (eds) Evaluation of Novel Approaches to Software

Engineering. ENASE 2019. Communications in Computer and

Information Science, Springer, Cham, Vol 1172; 163-187.

https://doi.org/10.1007/978-3-030-40223-5-8

Molnar, A.; and Motongna, S. (2017). Discovering Maintainability
Changes in Large Software Systems. In: Proceedings of the 27th
International Workshop on Software Measurements and 12thth
International Conference on Software and Process and Product
measurement, pp 88-93. IWSM Mepsure ’17, ACM, New York, NY,
USA (2017). https://doi.org/10-1145/31434344.3143447

Okhovati, M., Karami, F. and Khajouei, R. (2016). Exploring the

Usability of the Central Library Websites of medical Sciences.

Journal of Librarianship and Information Science, 49(3); 23-26.

https://doi.org/10.1177/096100050932

Olabiyisi, S. O. (2005). Universal Machine for Complexity

Measurement of Computer Programs. Unpublished PhD Thesis,

Ogbomoso – Nigeria, Ladoke Akintola University of Technology

Olatunji, E. K., Oladosu, J. B., Odejobi, O. A. and Olabiyisi, S. O.

(2021). Design and Implementation of an African Native

Language-based Programming Language. International Journal of

Advances in Applied Sciences (IJAAS), 10(2); 171-177. https:

//doi.org/10 .11591/ijaas.v2.i2.pp171-177

Olatunji, E. K. (2019). Development of a Programming Language

with Yoruba Lexicons. Unpublished PhD Thesis, Ogbomoso-Nigeria,

Ladoke Akintola University of Technology.

Olatunji, E. K., Oladosu, J. B., Odejobi, O. A. and Olabiyisi, S. O.

(2019a). Design of an African Native Language-based Programming

Language. University of Ibadan Journal
of Science and Logics in ICT Research (UIJSLICTR), 3(1); 72-78

Olatunji, E. K.,Oladosu, J. B., Odejobi, O. A. and Olabiyisi, S. O.

(2019b). A Needs Assessment for Indigenous Language-based

Programming Language, Annals of Science and Technology (AST) -

E, 4 (2); 1-5
DOI: https://doi.org/10.2478/ast-2019-0007

Olatunji, E.K., Oladosu, J.B., Odejobi, O. A and Olabiyisi, S.O. (2018).

Towards Development of an Indigenous African Language-based

Programming Language. FUOYE, Journal of Engineering and

Technology (FUOYEJET), 3(2); 61-64. https://doi.org/10.46792/

Pflepsen, A. (2011). Improving Learning Outcomes through

Mother Tongue-Based Education, MTB-MLE Network. Available

online at https://www.eddataglobal.org Last Accessed on 30-07-

2014, stored online as eddata_ii_mother_tongue _instruction.pdf

1(2); 148-159.

Rick-Rainer, L. (2013). Software Characteristics in ISO 9126.

Retrieved on 14-03-2022 from https://rickrainerludwig

.wordpress.com/2013/

Sacha, K. (2005). Evaluation of Software Quality. In Software

Engineering: Evolution and Emerging Technologies, pp 381 – 388,

Amsterdam, the Netherlands

Sebesta, R.W. (2012). Concepts of Programming Languages. New

Jersey, Pearson Education Inc.

Silva, G., Santos, G., Canedo, E.D., Rissoli, V., Praccano, B. and

Andrade, G. (2020) Impact of Calongo Language in an Introductory

Computer Programming Course. In 2020 IEEE Frontiers of

Education Conference, pp 1-9. DOI: https://doi.org/10.1109/FIF

44824.2020.9274150

Singh Y., Kaur A. and Suri B. (2008). An Empirical Study of Product

Metrics in Software Testing. In: Iskander M. (eds), Innovative

This journal is © The Nigerian Young Academy 2022 Annals of Science and Technology 2022 Vol. 7(1) xx-xx | x

https://doi.org/10/77
https://pdfs.semanticscholar.org/
https://doi.org/10.1177/096100050932
https://doi.org/10.46792/

Olatunji et al., 2022 An Evaluation of a Language Processor

Techniques in Instruction Technology, E-learning, E-assessment,

and Education. Springer, Dordrecht. https://doi.org/10.1007/978-

1-4020-8739-4_12

Singhal, S., Suri, B. and Gaur, G. (2014). Overview of Software

Engineering Metrics for Procedural Paradigm. In Proceedings of

IEEE on IT in Business, Industry and Government (CSIBIG), Indore,
pp 1-5. DOI: https://doi.org/10.1109/CSIBIG.2014.7056967.

Retrieved on 15-03-2022 from https://www.researchgate

net/publication/

Stein, C., Cox, G., and Etzkorn. (2005). Exploring the Relationship

between Cohesion and Complexity. Journal of Computer Science,

1(2); 137-144. https://doi.org/10.3844/jcssp.2005.137.144

Tomita, M. (2013). Efficient Parsing for Natural language: A fast
Algorithm for Practical Systems. (Vol 8),
Springer Sciences and Business Media, pp. 105

Trendowicz, A. and Punter, T. (2008). Quality Modelling for

Software Product Lines. Retrieved On 14-03-2022 from

https://www.reserachgate.net/publication/

UNESCO (2007). Mother Tongue-based Literacy Programmes: Case

Studies of Good Practice in Asia. Bangkok:
UNESCO Bangkok, Thailand, ISBN 92-9223-113-8 Available online

at www.unesdoc.unesco.org Retrieved on 30-07-2014

This journal is © The Nigerian Young Academy 2022 Annals of Science and Technology 2022 Vol. 7(1) xx-xx | x

https://www.researchgate/

