
CSC 310: Compiler Construction I

By

Olatunji, E.K.

Computer Sc Programme
FCAS

Thomas Adewumi University, Oko Iwo

April 2024

Course Description

• The course introduces the design and implementation of a compiler with emphasis on principles

and techniques for program analysis and translation.

•

• It also gives an overview of the tools for compiler construction. Lexical analysis, token selection,

transition diagrams, and finite automata. The use of context-free grammars to describe syntax,

derivations of parse trees, and construction of parsers. Syntax-directed translation schemes;

Intermediate code; Symbol table; Code generation; Detection, reporting, recovery, and correction

of errors.

Course Objectives

• Course Objectives are to:

• 1. Describe and distinguish among the main PL translators

• 2. Describe the functions of the main components of a typical
Compiler: lexical analyzers, Parsers, etc

• 3. Draw and describe the structure of a typical compiler

• 4. Introduce concept of formal grammar and languages

Expected Learning outcomes

• After the course, students should be able to:

• Explain functions of the 3 main translators

• Distinguish among the 3 main PL translators

• Describe functions of 5 main components of a compiler

• Draw and explain the structure of a typical compiler

• Give 5 types of internal form of source program

• List out the tokens of a program statement in a familiar PL

• Distinguish between the phase and the pass of a translator

• etc

Course Outline

• xx
S/N week Topics Duration

Durati
on

Week 1-2 Introduction to PL translators 6 hours

2. Week 3-4 Compilation Processes in Brief 6 hours

3 Week 5-6 Lexical Analysis in more details 6 hours

4 Week 7 CA 1 3hours

5 Week 8-9 Syntax analysis in details 6 hours

6 Week 10-11 Semantic Analysis 6 hours

7 Week 12-13 Code generation and Optimization 6 hours

8 Week 14 CA 2 3 hours

9 Week 15 Introductory Formal grammar and languages 3 hours

10 Week 16 Final Exam 3 hours

Lecture Outlines

❑Part I: Introduction

• Introduction to Compiler

• Compilation Processes in Brief

❑Part II – Compilation Processes in Details

❑Part III – Compilation Processes in More Details

Course Outline

• Introduction to Compiler

• Compilation process in Brief

• Lexical Analysis

• Syntax Analysis

• Semantic Analysis

• Code Generation

Recommended Reference materials

• 1. Compiler Techniques (An Introductory Text on Concepts and
Principles) by E. K. Olatunji

• 2. Principles of Compiler Design by Aho & Ullmam

• 3. Compiler Construction for Digital Computers by David Gries

• 4. Computer Science by C.S. French, @ BookPower, 5th edition

• 5. Compilers: principles, Techniques and tools by Aho, Lam, Sethi &
Ullmam @ 2007

• 6. Online Resources

Introduction to Compilers

❑What is a compiler?

• It is a programming language (PL) translator

• An H.L.L. source program translator, Usually into machine language
(ML) equivalent

• i.e, translates source program in HLL to its ML equivalent

• Its output is called object program/object code

• Its input is called source program

• Process of translation is called compilation

• Period of translation is called compile time

Introduction to Compilers Contd

❑Other PL translators

• Interpreters – Pseudo translation + execution

• Assemblers translates assembly language (AL) into ML

❑Linkage editor – combines 2 or more object modules into one single
executable code/program

❑Language for writing compilers

• AL eg, early compiler

• HLL eg, LISP, C compilers

Evolution of Compiler

• Problems of ML & AL which led to development t of HLL
➢difficulty in programming, debugging and maintenance

➢Portability problem due to machine specificness of ML and AL

➢Relocation problem of ML

• The need to translate HLL to make the program understandable and
executable by the computer machine

Types of Compiler

• Native code/conventional/traditional
• Translate a HLL source code to the ML of a specific target computer

• Output medium is a disk for later execution

• Cross compiler
• Produces object code that can be run, not only the target compiling machine,

but also on other machines of different configurations

• Load-and-go compiler
• Produces object code in ML directly into main memory for immediate

execution

Types of Compiler

• Stage compiler
• Produces object code in the AL of the target machine

• Just-in-time compiler
• Produces as output byte code, which are later compiled to the native code

prior to execution

• It is subset of the stage compiler

• Source-to-source compiler
• Its output is in another HLL

Section 2: Compilation Process in brief

• The compilation process consists of the following well-defined tasks;
viz:
• Lexical Analysis
• Syntax analysis
• Semantic analysis
• Code optimization – machine - independent
• Storage allocation
• Code Generation
• Code optimization II – Machine -dependent
• Info Table management
• Error Handling
The structure of a typical compiler is as in the next slide (Figure 1.1)

Section 2: Compilation Process in brief Contd

•

•

• Solid arrow indicates Program flow

• Broken arrow indicates data flow

• Figure 1.1: Structure of a Typical Compiler

Object Code

Lexical
Analysis

Semantic
Analysis

Code
Generation

Syntax
analysis

Error
Handling
Routine

Info Table

Symbol Table
Literal table

Source Program

Section 2: Compilation Process Contd

• These compilation tasks may be grouped into a number of phases
depending on the whims and caprices of the designer/implementor

• A phase of compilation usually involves performance of one or more
of the well-defined tasks

• Examples:
• 2-phases: Analysis (Lexical, syntax &semantic) and Synthesis(Code generation

and code optimization); sometimes respectively known as front-end and
back-end.

• 3-Phases:Lexical analysis, syntax & semantic analysis and Code generation
• 4-phases: Lexical Analysis, Syntax & Semantic Analysis, Preparation for code

generation (Storage assignment , machine –independent optimization), and
Code generation

Compilation Tasks in brief

• Lexical Analysis
• Scans source program statements, character by character (from left to right)

• Forms tokens of the language (i.e, the smallest unit of a source program)0
Examples of tokens are keywords, identifiers, literals, operators, etc

• Sends each token in its internal representation form to the next stage (syntax
analysis). This provides uniform ways of representing and handling tokens. For
e.g, unique integers can be used as internal representation of each token

• Eliminates redundancies (such as comments, spaces, etc)

• Detects errors, eg, illegal character, improperly formed identifiers, etc.

• The process is carried out by a routine called lexical analyzer or scanner

Compilation Tasks in brief

• Syntax analysis
• Performs syntactic checks on the source program statements. That is it

ensures that rules governing formation of valid statements are obeyed.
Specifically it ensures that appropriate tokens of syntactic unit follow each
other in appropriate sequence

• Builds up various table of info; e,g symbol table, table of constants, etc
• Conceptually creates a parse tree as output. This is an intermediate

representation that shows the grammatical structure of the tokens
stream. See example below!!

• Reports errors, such as multiple declaration of identifiers & other
violations of the syntax of the PL

• Carried out by a routine called parser or syntax analyzer

Compilation Tasks in brief Contd

• Semantic analysis
• Checks for the meaning of a syntactic unit; e.g, checking for type

compatibility

• Breaks complex statements , e.g For-lops, into its simple primitive forms

• Ensures that every if-statement, Do statement, etc has corresponding
matching ENDif, Enddo, etc respectively

• Ensures all referenced labels are uniquely defined

• Creates intermediate form of source program for every recognized
semantically well-formed statements, using either, syntax tree, polish
notation, etc

• Carried out by semantic analyzer or interpretive routine

Compilation Tasks in brief Contd

• Code optimization – machine – independent
• This is elimination / removal of semantically redundant codes ; e.g

consecutive store and load operations on the same operand

• For the purpose of improving the codes’ efficiency (run-time performance
& storage requirements)

• Storage allocation
• Storage is allocated to all variables/identifiers (user-defined & system

generated) prior to the next stage

Compilation Tasks in brief contd

• Code Generation
• Actual translation of the source code (actually the intermediate codes)

into the actual machine language codes

• Code optimization II – Machine –dependent
• Optimizes code to improve program efficiency – in terms of storage and

execution time.. Machine-dependent optimization include better
utilization available registers o and instruction set

Compilation Tasks in brief contd

• Info Table management
• A no. of tables are created maintained and manipulated during the

process of compilation. This include symbol table, literal table and table of
terminal symbol(.e, reserved words, operator symbols, etc)

• Error Handling
• Errors can be detected at any stage of the compilation process, especially

the first 3 stages. These errors must be reported. Aside, there would be a
way to recover and be able to continue especially till the end of the
semantic analysis stage.

Exercises

• 1. What gave rise to Compiler?

• 2.Describe the distinct features of the following types of compiler
• (i) Native-code compiler (ii) cross compiler

• (iii) load and go (iv) source-to-source compiler

• 3.Distinguish among compiler , interpreter and assembler

• 4. itemize the functions of the following routines of a compiler: (i)
code optimizer (ii) scanner (iii) parser (iv) semantic analyzer (v) Code
generator (vi) error handler

• 5. List and explain 3 types of info table known to you!

Object Code

Lexical
Analysis

Semantic
Analysis

Code
Generation

Syntax
analysis

Error
Handling
Routine

Info Table

Symbol Table
Literal table

Source Program

CSC 310: Compiler Construction I

By

Olatunji, E.K.

Computer Sc Programme
FCAS

Thomas Adewumi University, Oko

April 2024

Course Contents

❑Part I: Introduction

• Introduction to Compiler

• Compilation Processes in Brief

❑Part II – Compilation Processes in Details

• Lexical Analysis

• Syntax Analysis

• Semantic Analysis

• Code Generation

• Part III – Formal Grammar

• Intro to Formal Grammar

❑Part IV – Compilation Processes in More Details

Course Outline

• Lexical Analysis

• Syntax Analysis

• Semantic Analysis

• Code Generation

Recommended Reference materials

• 1. Compiler Techniques (An Introductory Text on Concepts and
Principles) by E. K. Olatunji; 2006

• 2. Principles of Compiler Design by Aho & Ullmam

• 3. Computer Science by C.S. French, @ BookPower, 5th edition

• 4. Compilers: principles, Techniques and tools by Aho, Lam, Sethi &
Ullmam @ 2007

• 5. Online Resources

Section I: Lexical Analysis

• Lexical Analysis
• Scans source program statements, character by character (from left to right)

• Forms tokens of the language (i.e, the smallest unit of a source program)0 Examples of
tokens are keywords, identifiers, literals, operators, etc

• Sends each token in its internal representation form to the next stage (syntax analysis).
This provides uniform ways of representing and handling tokens. For e.g, unique integers
can be used as internal representation of each token

• Eliminates redundancies (such as comments, spaces, etc)

• Detects errors, eg, illegal character, improperly formed identifiers, etc.

• The process is carried out by a routine called lexical analyzer or scanner

Lexical Analysis Contd
❑At this stage, the source program (SP) is broken into its smallest unit called tokens

❑Most PL tokens are in category:

• Identifiers or variable names

• Key words e.g : IF, else, do, for

• Special operators e.g <, >, =, +, etc

• Delimiters e,g comma, parenthesis, semi-colon

• Literals – numeric and non-numeric

• Separators, eg blanks

❑A separator can be any of:

• A blank xter

• Conventional arith operators

• Delimiters as described above

• A character that does not actually belong to d set of d expected xter that form a particular token
category; for example, in d token class integer, a scan of any xter other than digits 0-9 will serve as a
separator

• !

Lexical Analysis Contd

❑Input to scanner

A string of xters that form program source statement

❑Output of scanner

• PL tokens – in their internal representation form & the actual token

• Internal representation code ID, LT, DL can respectively stand for identifiers, literals,
delimiters

• Alternatively, different integers can be used to repr token types

• E.g, integer 01, 02, 03, can be use d to repr token type id, int, other literal

• Unique integer can be used to repr unique reserved words/keywords!

Lexical Analysis Contd
❑Example of Lexical Analysis

Given the following program statement in a

familiar PL:

for i =1; i < n; i++

cout << I;

The output of the scanner will be as shown in

figure/Table X.X1: on the RHS:

s/no Internal
Repr

Actuial
Value=

1 RWD for

2 IDN i

3 OPR =

4 NLT 1

5 DEL ;

6 IDN i

7 OPR <

8 IDN n

9 DEL ;

10 IDN i

11 OPR ++

12 RWD cout

13 OPR <<

14 IDN i

15 DEL ;

Section II: Syntax Analysis
• Syntax Analysis

• Performs syntactic checks on the source program statements. That is it ensures that rules
governing formation of valid statements are obeyed. Specifically it ensures that
appropriate tokens of syntactic unit follow each other in appropriate sequence

• Builds up various table of info; e,g symbol table, table of constants, etc

• Conceptually creates a parse tree as output. This is an intermediate representation that
shows the grammatical structure of the tokens stream. See example below!!

• Reports errors, such as multiple declaration of identifiers & other violations of the syntax
of the PL

• Carried out by a routine called parser or syntax analyzer

Parse Tree

• +

• X Y

• Figure 1: Parse Tree for X+Y

•

• =

• C *

•

• A B

• Figure 2: Parse tree for C=A*B

Syntax Analysis Contd
• At Syntax Analysis Stage/phase

• Complete syntactic checks are carried out on the source program (SP)

• Syntax of a PL are rules of combining tokens together in appropriate sequence to form a valid syntactic
construct

• Syntactic construct are phrases with associated meaning . Examples are

• Expression(arith, relational, etc)

• Assignment expression

• Declarative statements (e.g int a;

• For-loops

• Jump instructions

• Thru a no. of techniques, the syntax analyzer or parser is able to detect whether or not syntactic entities are
formed by appropriate combination of appropriate small syntactic entities and/or token

• Various tables of info; (e,g symbol table, table of constants, etc) are built

Syntax Analysis Contd
• Symbol Table

• also called identifier table

• Contains the identifier used in d SP along with their attributes

• Identifier attributes include : type, form, block number, etc

• ** more detail later

• Parsing Techniques
• Operator precedence – mostly suitable for parsing expression

• Recursive descent – uses a collection of mutually recursive routines to perform the syntax analysis

• Exercise:

• Describe each of the above techniques with an example; citation and listing of reference expected in APA
format; Due in a week’s time

Assignment – due on the date specified

• 1. Describe how d tokens of PL can be recognized

• 2. What are d output and input of a scanner

• 3. For the program segment below; write out the tokens available in
the program:
• int a, float b;

• Scanf (“%d%f”, a,b);

• 4. what is a parser? What are its input and outputs?

Section III: Semantic Analysis
• Semantic analysis

• Checks for the meaning of a syntactic unit; e.g, checking for type
compatibility

• Breaks complex statements , e.g For-loops, into its simple primitive forms

• Ensures that every if-statement, Do statement, etc has corresponding
matching ENDif, Enddo, etc respectively

• Ensures all referenced labels are uniquely defined

• Creates intermediate form of source program for every recognized
semantically well-formed statements, using either, syntax tree, polish
notation, etc

• Carried out by semantic analyzer or interpretive routine

Semantic Analysis

• Also called interpretive routine

• It consists of smaller semantic analyzing interpretive routine, each of
which handles one particular type of program construct

• For e.g; array declaration might be handled by one analyzer, arith
express by another; etc

• The appropriate interpretive routine is called / invoked when a
syntactic unit is recognized

Semantic Analysis Contd

• Intermediate form of SP (IFSP)

• For practical purposes, d compiler usually creates an intermediate
form of the source program(IFSP) instead of generating code directly
for each instruction. The IFSP offers 2 advantages:
• Facilitates (machine independent) code generation

• Provides clear separation between machine independent phase (The
analyzes) and machine dependent (code generation)

** more of this later

▪ Examples of IFSP are: parse tree, syntax tree, polish notations, List of
quadruples, etc

Section IV: Code Generation

• This phase converts an IFSP into a sequence of machine instruction

• For e.g; d statement A=B-C can become the following sequence of
Assembly language (AL) codes:

• LOAD B

• SUBTRACT C

• STORE A

• Note that there is 1 – 1 translation from AL to ML

Section IV: Code Generation Contd

• Another example;. The statement: W=X*Y+Z can become the following sequence
of Assembly language (AL) codes:

• LDA X

• MUL Y

• STA T1

• LDA T1

• ADD Z

• STA T2

• LDA T2

• STA W

• Where t1 & t2 are temporary compiler generated variables

Code Generation Contd

❑Code generator

• This is the routine that handles code generation

• Input to it is diff forms of IFSP

• Output is called object code, which can be in diff forms: ML, AL

• Note:
• A code generator will make ref to the symbol table, literal table, to generate

correct ML codes

Code Generation Contd

❑Types of object code
• Absolute ML instruction
• AL program – to be later assembled
• Relocatable ML – this is the conventional object code; requires linkage

editing
• A program in another HLL
• Note: Each of the above has pros & cons
• **Exercises:
• 1. Describe the pros and cons of each type of object code
• 2. give 2 examples of compiler that have their output in each of the diff 4

types of output possible

Code Generation Contd

❑Storage allocation

• Prior to actual generation of code, storage is normally assigned to all
identifiers (user-defined & compiler generated) and literals

• The storage allocation routine scans the symbol table & assigns to
each scalar variable a location

• For e.g; it can assign to d 1st variable, relative location 0, d 2nd to
location 4, 3rd to location 8 and so on; assuming each variable
requires 4 bytes of storage

• The literal table is similarly scanned and allocation made to each
entry

Code Generation Contd

❑Storage Allocation Example

• Given d following C program declaration:

• int a, float b; double c; char d;

• The relative location assigned to each
• variable will be as in the fig/tab below:

• In d fig, and d particular machine in use;

• Variables a, b, c, d are
• integer, float, double and char values respectively
• requires 2, 4, 8 and 1 byte(s) of storage

• Fig XX.X: Symbol table showing storage allocation in a C program

❑Code optimization

• More on this later!

Symbol
Name

Other
attribute
s

Storage
address

a 0

b 2

c 6

d 14

Section V: Error Detection & Recovery

• A good compiler should be able to:
• Detect and report on as many errors as possible during compilation

• Recover from where error is detected; it should be able to continue scanning
thru the remaining SP

• Program Errors
• Compilation errors – detectable by compilers

• (Can be lexical, syntax or semantic errors)

• Run-time error – detectable at execution time

• Logical errors – detectable by programmer

Error Detection & Recovery Contd

• Compilation Errors

• Lexical error
• E.g invalid character, improperly formed identifier

• Syntax error
• This is violation of the syntax of the PL; e.g

• Wrongly spelt reserved word

• Extraneous blank character within an id or reserved word

• Missing right or left parenthesis

Error Detection & Recovery Contd

• Compilation Errors Contd

• Semantic error
• Detectable at semantic analysis stage; e.g

• Undeclared identifier

• Multiplicatively declared id / Multiple declaration of an id

• Type incompatibility

• Missing matching Endif for an if-construct

• etc

Assignment – due on the date specified

• 1. Describe d action of a semantic analyzer on the following syntactic
construct:
• Assignment stmt
• Declaration stmt
• Arith expr

• 2. Describe 4 forms of output of a code generator

• 3. Generate AL code on our fictitious computer for the arithmetic
expression:
• a – b (c/d + e/f)

• 4. Show a part of symbol table that shows how storage are allocated to d C
declaration: int a, double c, char b;

Formal Grammar Contd

CSC 310 : Compiler Construction I

By

Olatunji, E.K.

Computer Sc Programme
FCAS

Thomas Adewumi University, Oko

March 2024

Course Contents

❑Part I: Introduction
• Introduction to Compiler
• Compilation Processes in Brief
❑Part II – Compilation Processes in Details
• Lexical Analysis
• Syntax Analysis
• Semantic Analysis
• Code Generation
• Intro to Formal Grammar
❑Part III – Compilation Processes in More Details

Course Outline

• Lexical Analysis

• Syntax Analysis

• Semantic Analysis

• Code Generation

• Intro to Formal Grammar

Recommended Reference materials

• 1. Compiler Techniques (An Introductory Text on Concepts and
Principles) by E. K. Olatunji

• 2. Principles of Compiler Design by Aho & Ullmam

• 3. Compiler Construction for Digital Computers by David Gries

• 4. Computer Science by C.S. French, @ BookPower, 5th edition

• 5. Compilers: principles, Techniques and tools by Aho, Lam, Sethi &
Ullmam @ 2007

• 6. Online Resources

Preambles on Languages and Related Terms

• Preambles on Languages and Related Terms

• Preambles on Languages and Related Terms

Language Description / Description of Language

• Language Description / Description of Language

• What is a language?

• It is a system of communication, which consists of a set of sounds and
written symbols, which are used by the people of a particular community
or culture for talking or writing (Collins English dictionary) and may also be
conveyed thru sign languages.

• Thus a language consists of finite set of valid symbols (or characters, such
as: A, z, @, 2, $, etc) from which valid words of the language are formed.

• A language is described by a set of rules (called grammar) that govern the
combination of valid words to produce meaningful units like phrases and
sentences

Language Description Contd

• Related Language Terms

• A lexical item is a single word or part of a word that forms the smallest
meaningful unit of a language

• Lexicon refers to the complete list of valid words in a particular language.

• Lexis refer to words, while structure refers to the organized arrangement of
words to form meaningful units, such as a phrases, clause, sentences, etc

• The lexical structure of a PL, for example, determines what group of
symbols or characters are to be treated as identifiers, reserved words,
operators, etc.

Language Description Contd

❑Related Language Terms contd

• In linguistics, syntax refers to the rules that govern the ways in which words combine
together to form phrases, clause, sentences, etc. The syntax rule of a language
determines why a sentence in English language such as “I hate you” is meaningful but
“hate you I” is not. Every language has its own specific rules or syntax

• Lexical syntax determines how a character sequence is spilt into a sequence of lexemes,
omitting non-significant parts, such as comments and whitespaces. The character
sequence is assumed to be a text according to the Unicode standard (according to
GNU.org (n.d)).

• Put another way, lexical syntax is the set of rules that enable lexical items of a language
to be identified in a text consisting of sequence of (Unicode)characters.

• Oxford Dictionary (1995) describes a grammar as the study of science of rules for the
combination of words in a language. It is a set of rules that describe a language.

•

Language Description Contd

• Distinguishing between Grammar and Syntax of a language

•

• Grammar Versus syntax from: https://prowritingaid.com/grammar-vs-
syntax 13-03-2023

• Grammar represents an entire set of rules for language, and syntax is
one section of those rules

• Grammar comprises the entire system of rules for a language,
including syntax. Syntax deals with the way that words are put
together to form phrases, clauses, and sentences.

https://prowritingaid.com/grammar-vs-syntax%2013-03-2023
https://prowritingaid.com/grammar-vs-syntax%2013-03-2023

Language Description Contd

• Distinguishing between Grammar and Syntax of a language Contd

• Definition & Meaning of Grammar (: https://prowritingaid.com/grammar-vs-syntax 13-
03-2023

• Grammar is the set of rules a language follows to convey meaning. Grammar is a broad
term that encompasses more specific areas of study including:

• Morphology: how words are formed and how adding or removing word parts can change
the tense or part of speech. For example, “nation” is a noun. Adding “al” to the end of
the word (’national’) changes this part of speech to an adjective.

• Phonology: how the parts of language sound.

• Semantics: what words or symbols mean.

• Syntax: how words are put together to create phrases, clauses, or sentences.

• All syntax rules are grammatical rules but not all grammatical rules are syntax rules!

https://prowritingaid.com/grammar-vs-syntax%2013-03-2023
https://prowritingaid.com/grammar-vs-syntax%2013-03-2023

Section VI:

Introduction to Formal Grammar

Section VI: Introduction to Formal Grammar
and Languages
• Language

• Informally defined as a notation for communication

• Grammar
• The study of science of rules for the combination of words in a language(Oxford Dictionary,

1995)
• E.g “Ade is a boy” –syntactically correct by the rules of English language
• But “these is a mangoes” !! Syntactically invalid

• Lexicons
• List of valid words in a particular language

• Syntax
• Rules that govern combination of valid words to form a valid statement in a language

• Semantics
• Literal meaning associated with a syntactic entity
• In programming language (PL), it means the run-time effect of a syntactic entity

Introduction to Formal Grammar and
Languages Contd
• Semantics

• Literal meaning associated with a syntactic entity
• In programming language (PL), it means the run-time effect of a syntactic entity

• Pragmatics
• Words that do not connote a literal meaning, but has a hidden meaning
• E.g; “the man kicks the buckcet”
• “Okun rin na gba ekuru je lowo ebora”
• In PL, it refers to implementation techniques, programming style / methodology &

historical development of a language

• Syntax Tree
• A tree-like diagram that describe the syntax or grammatical structure of a sentence

by breaking it into its constituent parts

Introduction to Formal Grammar and
Languages Contd
•

• Figure X.1: A Syntax tree for a simple sentence in English Language

Introduction to Formal Grammar and
Languages Contd
• The diagram in Fig. X.1 above is read or interpreted as:

• a <sentence> is composed by a <Noun Phrase> followed by a <Verb Phrase> .

• Similarly,
• a <Noun Phrase> is composed of an <article> followed by a <Noun>, etc

• Meta Language
• A language used for describing other languages; e.g; using Yoruba to teach

English in primary school

• BNF (Backus Normal Form)
• A notation or meta language for describing the ngrammar that defines a PL

BNF

• BNF (Backus Normal Form)
• A notation or meta language for describing the grammar that defines a PL

• There are a no. of symbols used; e.g
• ::= or ---> denotes “may be replaced by” or “may be defined by”
• < > is used to enclose syntactic entities or non-terminal symbols of a language

or grammar; e.g <sentence>
• | means “or”
• E.g; <Operand> ---> X|Y|Z
• That is, an <operand> in a language can be either X or Y or Z

• The syntax tree in Fig x.1 can be defined using a BNF notation as
follows”

BNF Contd

• The syntax tree in Fig x.1 can be defined using a BNF notation as
follows”
• <sentence> ---> <noun Phrase><Verb Phrase>

• <Noun Phrase> ---> <Article><Noun>

• “

• “

• <article> ---> The

• <Noun> ---> student

• A syntax tree written in BNF notation as above is called rules of
production of a grammar.

Grammar

• Grammar
• Has been informally defined

• Formally,
• A grammar is defined as consisting of 4 components: G=(V,T,S,P)

• Where
• V = the set of non-terminal symbols, e.g; <sentence>
• T = set of terminal symbols e.g, The, student, studies, etc
• S = the starting symbol; a distinguished non-terminal symbol from which all strings of a language are derived
• P = production rules written as A ---> B

• The word token is synonymous with terminal symbols

• Non-terminal symbols are special symbols that denote set of strings in the language – also called syntactic variables or entities!

• Eg;
• <statement> ---> begin <statement-list> end
• <statement-list> ---> <statement|<statement>;<statememt-list>

• The keywords begin, end and the semi-colon are the terminal symbols or tokens of the language

• Sometimes, capital Roman letter can be used for non-terminals, while small Roman letters are used for terminal symbols!

Derivation from Formal Grammar

• How are strings / word (sentence or form of sentence) of a language derived from
a given grammar?

• You do this by re-writing the non-terminal symbol into another form by applying
one or more of the production rules in any other

• For example
• <Print-stmt> ---> PRINT|PRINT <Expr>
• <Expr> ---> <Variable> | <variable> , | <variable>;
• <Variable> ---> <letter> | <letter> <digit>
• <letter> ---> A|B|C|…|Z
• <digit> ---> 0|1|2|…|8|9

• This is the grammar of a simple version of the PRINT statement in BASIC!

• From this grammar:
• Terminal symbols are: PRINT, Comma, Semi-colon, Letters A-Z and Digits 0-9
• Non-terminal symbols are: <Pint-stmt>, <Expr>, <variable>, <Letter> and <digit>

Derivation from Formal Grammar

• The following would be legal from the above grammar
• (i) PRINT A
• (ii) PRINT M4;
• etc

• How? – by re-writing the non-terminal symbols beginning from the START symbol of the grammar
• <Print-Stmt> ===> PRINT <Expr> (rule 2)
• ===> PRINT <ariable> (rule 3)
• ===> PRINT <Letter> (rule 6)
• ===> Print A (rule 9)

• Where
• Rule 1 = <Print-Stmt> ---> PRINT (of line 1 of the grammar)
• Rule 2 = PRINT <Expr> (of line 1 of the grammar)
• Rule 3 =<Expr> ---> <Variable> (of line 2 of the grammar)
• Rule 5 =<Expr> ---> <Variable>; (of line 2 of the grammar)
• Rule 10 =<Letter> ---> B (of line 4 of the grammar)

Derivation from Formal Grammar

• Leftmost derivation
• This is a derivation that always re-writes the leftmost non-terminal symbol

first. The derivation above is a leftmost derivation

• Rightmost derivation.
• This a derivation that always re-writes the rightmost non-terminal symbol first

Sentence & Sentential-form of a Language

• Definition 1

• Let G(Z) be a grammar. A string x is called a sentential form (or a sentence-like form) if x
can be derived from the distinguished starting symbol Z by the application of zero or
more application of the production rules of the grammar,’ i.e; Z ==>*x.

• Examples of sentential form from grammar G(<Print-stmt>) are
• PRINT <Expr>, PRINT <Variable>, PRINT, PRINT M4

• But <Expr><Variable> and <Variable><Letter> are not sentential form
• Because they cannot be derived from <Print-stmt>, the starting symbol of G(Z)

• Definition 2

• A sentence is a sentential form containing only terminal symbols.
• For e.g, PRINT and PRINT M4 are sentences

• But PRINT <Variable> and M4 are not because
• PRINT <Variable> contains a non-terminal symbol, though it can be derived from G(Z).
• M4 cannot be directly derived from<Print-stmt>, the starting symbol of G(Z).

Sentence & Sentential-form of a Language

• Definition 3
• A language L defined by a grammar G, written (L(G)), is the set of

sentences that can be derived from V in G; i.e.
• L(G) = {x|x Ꞓ T and V ==>*x}
• Where T = terminal symbols and V = starting non-terminal symbol of the grammar

• For example, the language L(<Print-stmt>) is the set of sentences of those
terminal symbols (i.e, PRINT, A-Z, 0-9, comma and semi-colon) which are
derivable from the distinguished starting symbol <Print-stmt>.

• Examples are:
• PRINT
• PRINT A
• PRINT M4
• etc

The Language of a Given Grammar

• The Language of a Given Grammar

• Consider the G2(S) which is:
• S - -> AB
• A - -> aA
• A - -> a
• B - -> Bb | b

• The language produced by this grammar consists of all strings from a string of a’s
followed by a string of b’s

• How?

• The language is obtained by first re-writing some of the production rules of the
grammar until some sentences are generated. For the generated sentences, some
pattern will be formed that can lead to a generalization of the language described
by the grammar.

The Language of a Given Grammar

• The Language of a Given Grammar Contd

• How?

• The language is obtained by first re-writing some of the production rules of the grammar until some sentences are generated. For
the generated sentences, some pattern will be formed that can lead to a generalization of the language described by the grammar.

• For example, from G2;

• S = = >AB = = > aB = = > ab (By applying rules 1, 3 & 5 in this order)

• S = = > AB = = > aAB = = > aaB = = > aab (Applying rules 1, 2, 3, & 5 in this order)

• S = = > AB = = > aAB = = > aaB = = > aaBb = = > aabb (Applying rules 1, 2, 3, 4. & 5 in thisorder)

• S = = > AB = = > aAB = = > aaB = = > aaBb = = > aaBbb = = > aabbb (applying rules 1, 2, 3, 4, 4, & 5 in this order)

• The language described by G2 can be written as :

• {(a!n)(b!m), where n=1,2,3,…; m=1,2,3..} or

• {an bm , n= 1, 2, 3…; m=1, 2, 3..}

Classification of Grammar- by Chomsky Noam
(1950)
• Type 0 or Phrase structure grammar

• α ---> β; α, β ↋VꓴT
• E.g;
• (i) aAbbaAB ---> abAB
• (ii) S ---> QNQ
• QN ---> QR
• RN ---> NNR
• Anything goes, no restriction

• Type 1 or context-sensitive
• α --->B, | α | <= | β | where | α | means length or no. of symbols in a
• In addition, d LHS cannot have more than 1 non-terminal symbol
• e.g (i) bB ---> Bd
• (ii) aAa ---> aaBa

• All the rules of grammar must satisfy the conditions specified

Classification of Grammar- by Chomsky Noam
(1950) Contd
• Type 2 or context-free

• In addition to type 1 above, the LHS can only contain one non-terminal & no terminal
symbol at all; the RHS may have more than one non-terminal symbol

• Most PLs are defined by type 2 grammar; e.g the grammar of the Print-Stmt

• Type 3 or Regular grammar
• Both LHS and RHS of a grammar must not have more than non-terminal symbol. Of

course no terminal symbol at all on LHS of production
• In general, a regular grammar may be either of the form: A --->a, A ---> Ba or A --->

aB

• It can be shown that all type 3 grammars are type 2 grammars; and all type
2 are type 1 and all type 1 are type 0 grammars

• Corresponding to hierarchy of grammars, are also hierarchy of language
• Type 0 grammar produces type 0 languages; etc

Urgent Assignment

• 1. Explain the following terms: (i) meta language (ii) syntax (iii) BNF (iv) formal grammar

• 2. Given the following grammar:
<Print-Stmt> --->PRINT | PRINT<Expr>
<Expr> ---><Variable>|<Variable> , | <Variable> ;
<variable> ---> <letter>| <Letter><Digit>
<Letter> ---> A|B|C|…|Z
<Digit> ---> 0|1|…|9

i) What is the starting symbol? (ii) how many rules are in the production?
ii) (iii) show that PRINT M4; is a string/sentence of the grammar
iii) What type/class of grammar is the given grammar?
iv) How will you know the the given grammar is not type 1?

• 3.what language is described by each of the following grammar?:

• i. S---> A; A ---> aAb|ab

• ii. <Num> ---> <No><Ldigit>|<Ldigit>
• <No> ---> <No><<Digit>|<Digit>
• <Digit> --->0|2|4|6|8|<Ldigit>
• <Ldigit> ---> 1|3|5|7|9

• Due date Tuesday 13th October, 2020; 3pm Latest!

Formal Grammar Contd

CSC 310: Compiler Construction I

By

Olatunji, E.K.

Computer Sc Programme
FCAS

Thomas Adewumi University, Oko Iwo

April 2024

Outline of the Lecture

• ?Curriculum

• Reference Materials -Recommended

• Introduction??

• Table Management I

• Intermediate Forms of Source program

• Code Optimization

Recommended Reference materials

• 1. Compiler Techniques (An Introductory Text on
Concepts and Principles) by E. K. Olatunji

• 2. Principles of Compiler Design by Aho & Ullmam

• 3. Compiler Construction for Digital Computers by
David Gries

• 4. Computer Science by C.S. French, @ BookPower, 5th

edition

• 5. Compilers: principles, Techniques and tools by Aho,
Lam, Sethi & Ullmam @ 2007

• 6. Online Resources

Section 1: Introduction

• Recall that the compilation process consists of
well-defined tasks; viz:
– Lexical Analysis
– Syntax analysis
– Semantic analysis
– Code optimization – machine - independent
– Storage allocation
– Code Generation
– Code optimization II – Machine -dependent
– Info Table management
– Error Handling

Section 1: Introduction Contd

• These compilation tasks may be grouped into a number of
phases depending on the whims and caprices of the
designer/implementor

• A phase of compilation usually involves performance of one
or more of the well-defined tasks

• Examples:
– 2-phases: Analysis (Lexical, syntax &semantic) and

Synthesis(Code generation and code optimization)
– 3-Phases:Lexical analysis, syntax & semantic analysis and Code

generation
– 4-phases: Lexical Analysis, Syntax & Semantic Analysis,

Preparation for code generation (Storage assignment , machine
–independent optimization), and Code generation

Section I: Introduction Contd

• Passes of a compiler
– A pass in compilation is any step (or group of steps) of

compilation which involves reading the entire source
program or its modified version

– There are single and multi-pass compilation with their pros
and cons!

– Examples of single pass
• WATFOR implemented for processing Fortran IV program
• Turbo Pascal
• BLISS /II Compiler – a system programming language

– Examples of Multi-pass
• Early C compilers (2-pass)
• IBM 360 Fortran IV H compiler (4 passes)

Section 2: Table Management I

• A no of tables are created, maintained and manipulated
during the process of Compilation. These include:

• Table of Terminal symbols
– These are reserved words, operators, delimiters
– E.g IF, READ, +, *

• Symbol Table
– This keeps info about all identifiers in the source program

together with the attributes of each
– Examples of attributes are data type, storage address,

• Constant or Literal Table
– This keeps tract of all literals/ constants in the program along

with their attributes
– Separate table may be kept for string literals

Table of Terminal Symbols

• Terminal symbols are the reserved word,
operators and delimiters (comma, parentheses,
etc)

• There is an entry for each terminal symbol

• An entry in the table consists of a symbol and its
attributes, viz:

– Internal representation

– category(reserved word, operator, etc)

• It is a permanent structure within the compiler

Table of Terminal Symbols Contd

• It is accessed by virtually all the phases of
compilation:

• Scanner – on finding a token, accesses the
table if the token belongs to any of the
terminal symbols, otherwise checks other
tables to know the token category

• Code generator – uses the machine code
attribute of a reserved word or an operator to
generate code

Table of Terminal Symbols Contd

• Sample structure is as shown below

• Table 1: Table of Terminal Symbols

Terminal
symbol

Internal Repr Symbol
category

Other
attributes

IF 05 KW

DO 06 KW

* 28 OP

, 09 DL

Symbol Table

• The table consists of all identifiers in the source program along with their
attributes

• Attributes of identifier include:
– Data type (integer, Boolean, etc)
– Category (constant, simple variable, subscripted variable, subroutine name,

etc))
– Block number for structured languages
– Storage address
– etc

• There is only one entry for each identifier
• The table is usually created at the syntax analysis phase
• Usually, pters to (or address of) the identifiers are stored in the table,

while the actual identifiers along with their lengths are stored in a special
string list

• Table 2 is a sample structure of a symbol table; Table 3 is its condensed
form containing 3 identifiers, Table 4 shows its modified form

Symbol Table Contd

• Table 2: Sample structure of a Symbol Table

• Table 3: Symbol table with 3 identifiers.

Identifier Category Type Other
attributes

Storage
Address

Entry No Identifier Attributes

1. Area

2. Length

3. Width

4.

Symbol Table Contd

• Table 4: Symbol Table with 3 identifiers

• Identifier Attributes

Area

Length

Width

4 AREA 6 Length 5 Width

Symbol Table Contd

• The semantic routine enters most of the
attributes

• Storage allocation fills in the storage address

• Code Generator uses most of the info in the table
to generate code

• The whole translation process revolves around
the symbol table (explain!).

• Thus the table must be structured in a way to
allow for efficient access for retrieval or storage.

Literal Table

• Quiz. Describe the content and structure of a
literal table

Quiz on Table management

• 1. Describe the contents of 3 important tables
of info kept or created by a compiler

• 2.Write brief notes on the symbol table and its
importance during compilation

• 3. describe

Section 3: Intermediate Forms of
Source program

• More commonly, after the analysis phase, compiler usually
create intermediate form of the source program (IFSP) b4
the actual code generation

• Purpose:
– To facilitate code optimization (machine-independent)
– To provide a clear separation between the machine-

independent & machine dependent phases of compilation

• In most IFSPs, operator appear in the order in which they
are to be executed

• A combination of IFSPs are used rather than using only one
exclusively

• Common IFSPs are the parse tree, polish notation, 3-
Address code, Quadruples, Triples

Parse Tree

• Parse Tree – also called syntax tree
• More commonly used for arithmetic expressions

and /or statement
• In parse tree, every variable or constant is a

terminal node
• Each operator forms a node, usually having left

and right branches, and constructed in the order
dictated by rules of algebra

• Figure 1 is a parse tree for the expression: X+Y
• Figure 2 is a parse tree for arith statement C=A*B

Parse Tree

• +

• X Y

• Figure 1: Parse Tree for X+Y

• =

• C *

• A B

• Figure 2: Parse tree for C=A*B

Matrix Notation

• More practicable than Parse tree

• It is a linear list in the order the operations are to be
carried out

• Table 5 is a matrix notation for the statement:
Y=X+W*Z

• Table 5: Matrix for a Sample Arithmetic Statement

Matrix Entry
number

Operator OPerand1 Operand2

1 * W Z

2 + X M1

3 = Y M2

Polish Notation

• In this notation, the operator comes immediately after its 2 operands

• The order of evaluating the operators are kept

• Also called suffix or postfix notation

• Table 6 shows sample infix expressions with their polish notation
equivalent

• Figure 6: Sample Polish notation expressions

Infix
Notation

Polish Notation

I X+Y XY+

Ii X*Y+Z XY*Z+

Iii X+Y*Z XYZ*+

iv W=X*Y+Z WXY*Z+=

List of Quadruples

• It is of the form:
(operator, Operand1, Operand2, Result)

• Has been used by PL/1, being an optimizing compiler
• Example 1: A*B would be represented by

*, A,B,T
• Where T is a temporary variable to which result is assigned
• Example 2: Assignment operation X=Y in this notation would be

=,Y, ,X
bcos the result of operation is stored in X.
• Quadruple for W=X+Y*Z consists of the following:

*,Y,Z,R1
+,X,T1,R2
=,R2, ,W

• R1 & r2 are temporary variables
• Note: The order of carrying out the operations are preserved

Triples

• Overcomes the many temporary variables
usually generated by Quadruples

• Also takes less space than Quadruples

• It is of the form:
<operator>,<operand1>,<Operand2>

• Example: A+B*C in Triples would be

(1)*,B,C

(2)+,A,(1)

Three-Address Code

• It is of the form X=Y op Z
• Where X, Y & z are either programmer-defined variable,

constants or compiler-generated temporary variables; OP
stands for operation, which can be arith or logical operation

• Example 1: A+B represented as
T=A+B

• Example2: A+B*C becomes
T1=B*C
T2=A+T1

• Where T1 & T2 are compiler-generated temporaries
• Commonly used by languages that do extensive

optimization, e.g Fortran, PL/I, COBOL

Quiz on ‘IFSP’

• What are the purposes of IFSP of source
program?

• Give 5 different IFSPs for the expression:

a-b(c/d+e/f)

Section 4: Code Optimization

• This is elimination / removal of semantically redundant
codes

• For the purpose of improving the codes’ efficiency
(run-time performance & storage requirements)

• Consider the statement A=B*C+D:
• This can be represented by a list of quadruples as:

*,B,C,T1
+,T1,D,T2
=,T2, ,A

• Sample symbolic code generated for each quadruple
on an hypothetical computer is as follows:

Code Optimization Contd

• Sample symbolic code generated for each quadruple
on an hypothetical computer is as follows:

LDA b

MUL C for *, B,C,T1

STA T1

LDA T1

ADD D for +,T1,D,T2

STA T2

LDA T2 for =,T2, ,A

STA A

Code Optimization Contd

• Removing the 3rd & 4th codes will not have negative effect
on the result of the statement; rather, it leads to a more
efficient code (less time & less storage)

• The 6th & 7th codes are similarly semantically redundant
• A more efficient code for the statement will be:

LDA B
MUL C
ADD D
STA A

There are 2 types:
Machine-independent &
Machine-dependent

Machine-Independent Optimization

• Compile-time computation/Constant folding
– This is performing operations whose operands are known at

compile time
– E.g; A=7*22/7*R**2 can be come 22*R**2

• Moving invariant computation outside the loop
– Consider the loop segment:

k=0;
for (i=1; I <= 100; i++)
{

k=k+i;
x1=5;

}

– Moving the statement x1=5 from within the loop will not –
negatively impact the result

Machine-Independent Optimization

• Elimination of common sub-expression

– Consider the statement: Y(K+1) = X(K+1)

– The expression K+1 is common to both LHS and
RHS

– The statement can be reduced to

• J=K+1

• Y(J)=X(J)

• Boolean expression optimization

– Assignment: Look for explanation &example

Machine-dependent Optimization

• In this optimization, features of the actual
machine are exploited; such as:
– Better use of available registers

– Better use of the instruction set

• The method includes:
– Elimination of consecutive store & Load instruction on

the same operand

– Use of fast and shorter machine instruction, where
possible; eg:
• Using ADD Register instead of ADD storage

Quiz on Code Optimization

• What is code optimization? What is its
purpose?

• List and explain, with an example, 2 methods
of machine-independent and machine-
dependent code optimization

• Give / Generate an optimized / optimal code
for the HLL statement: W=X*Y-Z

