
Foundation of Data Structure Page 1

MATHEMATICAL AND COMPUTING SCIENCE DEPARTMENT

CSC 204

LECTURE NOTE

DR. R.O. FOLARANMI

AYEPEKU F.O

Foundation of Data Structure Page 2

Course objectives:

At the end of this course, students will understand:

1. Basic Concepts of Data Structure

2. Implement Array and Linked Lists

3. implement Stacks and Queues

4. Trees and Binary Trees:

5. Graphs:

Table of contents:

CHAPTER ONE: Introduction to Abstract Data Types and Object-Oriented Programming

CHAPTER TWO: Primitive Data Structure

CHAPTER THREE: Arrays

CHAPTER FOUR: Linked List

CHAPTER FIVE: Stack in Data Structures

CHAPTER SIX: Queue in Data Structure

CHAPTER SEVEN: Non Linear Data Structure

Foundation of Data Structure Page 3

CHAPTER ONE

Introduction to Abstract Data Types and Object-Oriented Programming

A data structure is a specialized format for organizing, processing, retrieving and storing data.

There are several basic and advanced types of data structures, all designed to arrange data to suit

a specific purpose. Data structures make it easy for users to access and work with the data they

need in appropriate ways. Most importantly, data structures frame the organization of

information so that machines and humans can better understand it.

In computer science and computer programming, a data structure may be selected or designed to

store data for the purpose of using it with various algorithms. In some cases, the algorithm's

basic operations are tightly coupled to the data structure's design. Each data structure contains

information about the data values, relationships between the data and -- in some cases --

functions that can be applied to the data.

For instance, in an object-oriented programming language, the data structure and its associated

methods are bound together as part of a class definition. In non-object-oriented languages, there

may be functions defined to work with the data structure, but they are not technically part of the

data structure.

Why are data structures important?

Typical base data types, such as integers or floating-point values, that are available in most

computer programming languages are generally insufficient to capture the logical intent for data

processing and use. Yet applications that ingest, manipulate and produce information must

understand how data should be organized to simplify processing. Data structures bring together

the data elements in a logical way and facilitate the effective use, persistence and sharing of data.

They provide a formal model that describes the way the data elements are organized.

Data structures are the building blocks for more sophisticated applications. They are designed by

composing data elements into a logical unit representing an abstract data type that has relevance

to the algorithm or application. An example of an abstract data type is a "customer name" that is

composed of the character strings for "first name," "middle name" and "last name."

https://www.techtarget.com/whatis/definition/algorithm
https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP
https://www.techtarget.com/searchapparchitecture/definition/data-type
https://www.techtarget.com/searchdatamanagement/feature/Why-understanding-data-structures-is-so-important-to-coders

Foundation of Data Structure Page 4

It is not only important to use data structures, but it is also important to choose the proper data

structure for each task. Choosing an ill-suited data structure could result in slow runtimes or

unresponsive code. Five factors to consider when picking a data structure include the following:

1. What kind of information will be stored?

2. How will that information be used?

3. Where should data persist, or be kept, after it is created?

4. What is the best way to organize the data?

5. What aspects of memory and storage reservation management should be considered?

How are data structures used?

In general, data structures are used to implement the physical forms of abstract data types. Data

structures are a crucial part of designing efficient software. They also play a critical role in

algorithm design and how those algorithms are used within computer programs.

Early programming languages -- such as Fortran, C and C++ -- enabled programmers to define

their own data structures. Today, many programming languages include an extensive collection

of built-in data structures to organize code and information. For example, Python lists and

dictionaries, and JavaScript arrays and objects are common coding structures used for storing

and retrieving information.

Software engineers use algorithms that are tightly coupled with the data structures -- such as

lists, queues and mappings from one set of values to another. This approach can be fused in a

variety of applications, including managing collections of records in a relational database and

creating an index of those records using a data structure called a binary tree.

Some examples of how data structures are used include the following:

 Storing data. Data structures are used for efficient data persistence, such as specifying

the collection of attributes and corresponding structures used to store records in a

database management system.

 Managing resources and services. Core operating system (OS) resources and services

are enabled through the use of data structures such as linked lists for memory allocation,

file directory management and file structure trees, as well as process scheduling queues.

https://www.techtarget.com/searchsoftwarequality/definition/runtime
https://www.techtarget.com/searchapparchitecture/definition/data-type
https://www.techtarget.com/searchwindowsserver/definition/C
https://www.techtarget.com/whatis/definition/Python
https://www.theserverside.com/definition/JavaScript
https://www.techtarget.com/searchdatamanagement/definition/relational-database
https://www.techtarget.com/searchapparchitecture/answer/What-is-the-best-pattern-to-use-for-data-persistence

Foundation of Data Structure Page 5

 Data exchange. Data structures define the organization of information shared between

applications, such as TCP/IP packets.

 Ordering and sorting. Data structures such as binary search trees -- also known as an

ordered or sorted binary tree -- provide efficient methods of sorting objects, such as

character strings used as tags. With data structures such as priority queues, programmers

can manage items organized according to a specific priority.

 Indexing. Even more sophisticated data structures such as B-trees are used to index

objects, such as those stored in a database.

 Searching. Indexes created using binary search trees, B-trees or hash tables speed the

ability to find a specific sought-after item.

 Scalability. Big data applications use data structures for allocating and managing data

storage across distributed storage locations, ensuring scalability and performance. Certain

big data programming environments -- such as Apache Spark -- provide data structures

that mirror the underlying structure of database records to simplify querying.

Data Structure Classification

https://www.theserverside.com/blog/Coffee-Talk-Java-News-Stories-and-Opinions/Solve-the-prefix-sum-problem
https://www.techtarget.com/searchdatamanagement/definition/Apache-Spark

Foundation of Data Structure Page 6

Characteristics of data structures

Data structures are often classified by their characteristics. The following three characteristics

are examples:

1. Linear or non-linear. This characteristic describes whether the data items are arranged

in sequential order, such as with an array, or in an unordered sequence, such as with a

graph.

2. Homogeneous or heterogeneous. This characteristic describes whether all data items in

a given repository are of the same type. One example is a collection of elements in an

array, or of various types, such as an abstract data type defined as a structure in C or a

class specification in Java.

3. Static or dynamic. This characteristic describes how the data structures are compiled.

Static data structures have fixed sizes, structures and memory locations at compile time.

Dynamic data structures have sizes, structures and memory locations that can shrink or

expand, depending on the use.

Data types

If data structures are the building blocks of algorithms and computer programs, the primitive --

or base -- data types are the building blocks of data structures. The typical base data types

include the following:

 Boolean, which stores logical values that are either true or false.

 integer, which stores a range on mathematical integers -- or counting numbers. Different

sized integers hold a different range of values -- e.g., a signed 8-bit integer holds values

from -128 to 127, and an unsigned long 32-bit integer holds values from 0 to

4,294,967,295.

 Floating-point numbers, which store a formulaic representation of real numbers.

 Fixed-point numbers, which are used in some programming languages and hold real

values but are managed as digits to the left and the right of the decimal point.

 Character, which uses symbols from a defined mapping of integer values to symbols.

 Pointers, which are reference values that point to other values.

https://www.techtarget.com/searchnetworking/definition/dynamic-and-static
https://www.techtarget.com/whatis/definition/Boolean
https://www.theserverside.com/blog/Coffee-Talk-Java-News-Stories-and-Opinions/int-vs-Integer-java-difference-comparison-primitive-object-types

Foundation of Data Structure Page 7

 String, which is an array of characters followed by a stop code -- usually a "0" value -- or

is managed using a length field that is an integer value.

How to choose a data structure

When choosing a data structure for a program or application, developers should consider the

answers to the following three questions:

1. Supported operations. What functions and operations does the program need?

2. Computational complexity. What level of computational performance is tolerable? For

speed, a data structure whose operations execute in time linear to the number of items

managed -- using Big O Notation: O(n) -- will be faster than a data structure whose

operations execute in time proportional to the square of the number of items managed --

O(n^2).

3. Programming elegance. Are the organization of the data structure and its functional

interface easy to use?

Some real-world examples include:

 Linked lists are best if a program is managing a collection of items that don't need to be

ordered, constant time is required for adding or removing an item from the collection and

increased search time is OK.

 Stacks are best if the program is managing a collection that needs to support a LIFO

order.

 Queues should be used if the program is managing a collection that needs to support a

FIFO order.

 Binary trees are good for managing a collection of items with a parent-child relationship,

such as a family tree.

 Binary search trees are appropriate for managing a sorted collection where the goal is to

optimize the time it takes to find specific items in the collection.

 Graphs work best if the application will analyze connectivity and relationships among a

collection of individuals in a social media network.

Foundation of Data Structure Page 8

Data Structures vs. Abstract Data Types

Data Structures

Data structures refer to the actual implementation of organizing, storing, and manipulating data

in a computer‟s memory. They are concrete and specific, defining how data is arranged and

accessed. Examples include arrays, linked lists, stacks, queues, and hash tables. Data structures

are crucial for optimizing operations on data, as they determine how quickly and efficiently tasks

can be performed.

Abstract Data Types (ADTs)

On the other hand, ADTs are more theoretical and high-level. They define a set of operations that

can be performed on data without specifying how those operations are implemented. This allows

programmers to think in terms of what a data type can do, rather than how it does it. For

instance, a stack ADT involves operations like push, pop, and peek, without specifying whether

it‟s implemented using an array, a linked list, or some other structure.

What is Abstract Data Type?

An Abstract Data Type (ADT) is a programming concept that defines a high-level view of a data

structure, without specifying the implementation details. In other words, it is a blueprint for

creating a data structure that defines the behavior and interface of the structure, without

specifying how it is implemented.

An ADT in the data structure can be thought of as a set of operations that can be performed on a

set of values. This set of operations actually defines the behavior of the data structure, and they

are used to manipulate the data in a way that suits the needs of the program.

ADTs are often used to abstract away the complexity of a data structure and to provide a simple

and intuitive interface for accessing and manipulating the data. This makes it easier for

programmers to reason about the data structure, and to use it correctly in their programs.

Examples of abstract data type in data structures are List, Stack, Queue, etc.

Foundation of Data Structure Page 9

Abstract Data Type Model

List ADT

Lists are linear data structures that hold data in a non-continuous structure. The list is made up of

data storage containers known as "nodes." These nodes are linked to one another, which means

that each node contains the address of another block. All of the nodes are thus connected to one

another via these links. You can discover more about lists in this article: Linked List Data

Structure.

https://www.prepbytes.com/blog/linked-list/a-brief-introduction-to-linked-lists/
https://www.prepbytes.com/blog/linked-list/a-brief-introduction-to-linked-lists/

Foundation of Data Structure Page 10

Some of the most essential operations defined in List ADT are listed below.

 front(): returns the value of the node present at the front of the list.

 back(): returns the value of the node present at the back of the list.

 push_front(int val): creates a pointer with value = val and keeps this pointer to the front

of the linked list.

 push_back(int val): creates a pointer with value = val and keeps this pointer to the back

of the linked list.

 pop_front(): removes the front node from the list.

 pop_back(): removes the last node from the list.

 empty(): returns true if the list is empty, otherwise returns false.

 size(): returns the number of nodes that are present in the list.

Stack ADT

A stack is a linear data structure that only allows data to be accessed from the top. It simply has

two operations: push (to insert data to the top of the stack) and pop (to remove data from the

stack). (used to remove data from the stack top).

Some of the most essential operations defined in Stack ADT are listed below.

Foundation of Data Structure Page 11

 top(): returns the value of the node present at the top of the stack.

 push(int val): creates a node with value = val and puts it at the stack top.

 pop(): removes the node from the top of the stack.

 empty(): returns true if the stack is empty, otherwise returns false.

 size(): returns the number of nodes that are present in the stack.

Queue ADT

A queue is a linear data structure that allows data to be accessed from both ends. There are two

main operations in the queue: push (this operation inserts data to the back of the queue) and pop

(this operation is used to remove data from the front of the queue).

Some of the most essential operations defined in Queue ADT are listed below.

 front(): returns the value of the node present at the front of the queue.

 back(): returns the value of the node present at the back of the queue.

 push(int val): creates a node with value = val and puts it at the front of the queue.

 pop(): removes the node from the rear of the queue.

 empty(): returns true if the queue is empty, otherwise returns false.

 size(): returns the number of nodes that are present in the queue.

Advantages of ADT in Data Structures

The advantages of ADT in Data Structures are:

 Provides abstraction, which simplifies the complexity of the data structure and allows

users to focus on the functionality.

Foundation of Data Structure Page 12

 Enhances program modularity by allowing the data structure implementation to be

separate from the rest of the program.

 Enables code reusability as the same data structure can be used in multiple programs with

the same interface.

 Promotes the concept of data hiding by encapsulating data and operations into a single

unit, which enhances security and control over the data.

 Supports polymorphism, which allows the same interface to be used with different

underlying data structures, providing flexibility and adaptability to changing

requirements.

Disadvantages of ADT in Data Structures

There are some potential disadvantages of ADT in Data Structures:

 Overhead: Using ADTs may result in additional overhead due to the need for abstraction

and encapsulation.

 Limited control: ADTs can limit the level of control that a programmer has over the data

structure, which can be a disadvantage in certain scenarios.

 Performance impact: Depending on the specific implementation, the performance of an

ADT may be lower than that of a custom data structure designed for a specific

application.

Foundation of Data Structure Page 13

CHAPTER TWO

Primitive Data Structure

Primitive data types, also known as basic data types or fundamental data types, are the simplest

data types provided by a programming language. They are the building blocks for constructing

more complex data structures and represent basic values that can be manipulated directly by the

computer's hardware. Primitive data types are typically supported directly by the language and

are not composed of other data types.

Primitive Data Types: Primitive data types are fundamental data types provided by a

programming language to represent basic values. They are directly supported by the language

and typically correspond to data types natively supported by the computer's hardware.

Primitive data types are used to store simple values such as integers, floating-point numbers,

characters, and boolean values. They are often classified based on the kind of data they represent

and the amount of memory they occupy.

Key Features of Primitive Data Structures

Primitive data structures have several key features that make them useful in programming. Here

are the details of each key feature:

1. Size: Primitive data structures have a fixed size, which means that they take up a

predictable amount of memory. For example, an integer in most programming languages

takes up four bytes of memory, regardless of the value it represents.

2. Speed: Primitive data structures are simple, which means that they can be processed

quickly by the computer. Because they have a fixed size and format, the computer can

easily perform calculations and operations on them without needing to spend extra time

or resources on interpretation or conversion.

3. Memory Efficiency: Primitive data structures use a minimal amount of memory, which

is important when working with large amounts of data. Because they have a fixed size,

primitive data types are more efficient in terms of memory usage than complex data

structures.

4. Portability: Primitive data structures are typically the same across different

programming languages and platforms, which makes code more portable. This means

Foundation of Data Structure Page 14

that code written in one programming language or for one platform can often be easily

adapted to work on another platform or with another programming language.

Types of Primitive Data Structures

Let us now look at some of the most often-used primitive data structures.

1. Bool

The bool data type is a primitive data structure that represents a logical value, which can be

either true or false. In most programming languages, the bool data type has a fixed size of one

byte.

Syntax in C++:

bool a = true;

Syntax in Java:

boolean a = false;

Syntax in Python:

a = True

2. Byte

The byte data type is a primitive data structure that represents an 8-bit signed integer. In Java, the

byte data type is represented using the keyword "byte" and has a size of 1 byte. It is useful for

storing small integers in memory and is often used in situations where memory usage is critical.

Syntax in Java:

byte myByteVariable = 127;

In this example, "myByteVariable" is a byte variable that has been assigned the value 127. Note

that the range of values that can be stored in a byte is -128 to 127, inclusive.

Foundation of Data Structure Page 15

3. Char

The char data type is a primitive data structure that represents a single character, such as a letter,

digit, or symbol. The char data type has a fixed size of two bytes.

Syntax in C++:

char myChar = 'A';

Syntax in Java:

char myChar = 'C';

4. Int

The int data type is a primitive data structure that is used to represent integer values. It can store

both positive and negative whole numbers, such as 0, 1, -2, 100, etc. The int data type has a fixed

size of 4 bytes in memory.

Syntax in C++:

int myInt = 15;

Syntax in Java:

int myInt = 25;

Syntax in Python:

myInt = 30

5. Float

The float data type is a primitive data structure that is used to represent floating-point numbers. It

is used to store real numbers that require a decimal point, such as 3.14 or -2.5. The float data

type has a fixed size of 4 bytes in memory.

Syntax in C++:

Foundation of Data Structure Page 16

float myFloat = 3.14;

Syntax in Java:

float myFloat = 5.20f;

In this example, "myFloat" is a float variable that has been assigned the value 5.20. The "f" at the

end of the value indicates that it should be treated as a float rather than a double.

Syntax in Python:

myFloat = 7.14

6. Double

The double data type is similar to the float data type but can store larger decimal values with

more precision. It is a primitive data structure that is used to represent floating-point numbers

with double precision. The double data type has a fixed size of 8 bytes in memory.

Syntax in C++:

double myDouble = 3.14159;

Syntax in Java:

double myDouble = 3.14159d;

7. Long

The long data type is a primitive data structure that is used to represent integer values that

require more memory than an int. It can store larger whole numbers, such as 2147483647 or -

2147483648. The long data type has a fixed size of 8 bytes in memory.

Syntax in C++:

long myLong = 2147483647;

Syntax in Java:

Foundation of Data Structure Page 17

long myLong = 2147483647;

8. Short

The short data type is a primitive data structure that is used to represent integer values that

require less memory than an int. It can store smaller whole numbers, such as 32767 or -32768.

The short data type takes only 2 bytes in memory.

Syntax in C++:

Short int num = 32767;

Syntax in Java:

short num = 32767;

9. Pointer

A pointer is a primitive data structure that stores the memory address of another variable or data

structure. It is a powerful tool for memory management and data manipulation in C and C++.

Pointers are not available in Java or Python.

Here is how a pointer is defined and used in C and C++:

In C and C++, a pointer is defined using the "*" symbol before the variable name. Here is an

example of how to declare and use a pointer in C++:

int myInt = 42;

int* myPointer = &myInt;

In this example, "myPointer" is a pointer variable that has been assigned the memory address of

"myInt" using the "&" symbol.

Memory Representation of Primitive Data Structure

These primitive data types serve as the basic building blocks for storing and manipulating data in

programming languages. They are used extensively in variable declarations, function parameters,

Foundation of Data Structure Page 18

and return types to represent different kinds of data. Understanding and using these data types

correctly is essential for writing efficient and correct programs.

1. Integer:

o Integers are typically stored using a fixed number of bits, which determines their

range and precision.

o Common integer data types include int, long, short, and byte.

o The memory representation of integers uses binary encoding, where each bit

represents a binary digit (0 or 1).

Example in C++:

cpp

int number = 42; // 32 bits (4 bytes)

Memory Representation:

00000000 00000000 00000000 00101010

In this example, the integer 42 is stored in memory using 32 bits, with each bit representing a

binary digit.

2. Floating-Point:

o Floating-point numbers are stored using a binary representation that includes a

sign bit, a significand (or mantissa), and an exponent.

o Common floating-point data types include float and double.

o The memory representation of floating-point numbers follows the IEEE 754

standard, which defines how numbers are encoded in binary format.

Example in Java:

java

double value = 3.14159; // 64 bits (8 bytes)

Memory Representation:

Foundation of Data Structure Page 19

01000000 00010010 10010000 11110101 11100001 01000100 01000010 00101100

In this example, the floating-point number 3.14159 is stored in memory using 64 bits, following

the IEEE 754 standard.

3. Character:

o Characters are typically stored using a fixed number of bits, where each bit

represents a character from a character set (e.g., ASCII or Unicode).

o Character data types include char in C/C++ and Java.

o The memory representation of characters depends on the character encoding used

by the system.

Example in C:

c

char letter = 'A'; // 8 bits (1 byte)

Memory Representation (ASCII):

01000001

In this example, the character 'A' is stored in memory using 8 bits, following the ASCII character

encoding.

4. Boolean:

o Booleans are typically stored using a single bit, where true is represented by 1 and

false is represented by 0.

o Boolean data types include bool in C++ and C#, and boolean in Java.

Example in C#:

csharp

bool isValid = true; // 1 bit

Memory Representation:

1

Foundation of Data Structure Page 20

CHAPTER THREE

Arrays

Arrays are fundamental data structures used in computer science and programming. They

provide a way to store a collection of elements of the same data type in contiguous memory

locations. Arrays offer efficient access to elements using index-based retrieval, making them an

essential component in various algorithms and applications. Understanding the different types of

arrays and their characteristics is crucial for effective problem-solving and optimizing program

performance.

What is an Array Data Structure?

A linear data structure called an array contains elements of the same data type in contiguous and

nearby memory regions. Arrays operate using an index system with values ranging from 0 to (n-

1), where n is the array‟s size.

Although it is an array, arrays were introduced for a reason.

Why Do You Need Array Data Structure?

Foundation of Data Structure Page 21

Consider a class of ten students that is required to report its results. It would be difficult to

manipulate and preserve the data if you had specified each of the ten variables individually.

It would be more challenging to declare and maintain track of all the variables if more students

joined. Arrays were introduced as a solution to this issue.

What Are the Types of Arrays?

There are primarily three types of arrays:

One-Dimensional Arrays:

A one-dimensional array can be thought of as a row where elements are kept one after the other.

Multi-Dimensional Arrays:

There are two different types of these multidimensional arrays. Those are:

Two-Dimensional Arrays:

It can be compared to a table with elements in each cell.

Three-Dimensional Arrays:

https://www.prepbytes.com/blog/arrays/types-of-array/
https://www.prepbytes.com/blog/arrays/one-dimensional-array/

Foundation of Data Structure Page 22

It is comparable to a larger cuboid composed of smaller cuboids, where each cuboid can hold a

different element.

One-dimensional arrays will be used in this session on "arrays data structure."

How Do You Declare an Array?

The size of the arrays is often the argument in square bracket definitions for arrays.

The syntax for arrays is as follows:

 1D Arrays: int arr[n];

 2D Arrays: int arr[m][n];

 3D Arrays: int arr[m][n][o];

Foundation of Data Structure Page 23

How Do You Initialize an Array?

An array can be initialized in four different ways.:

Method 1:

int a[6] = {2, 3, 5, 7, 11, 13};

Method 2:

int arr[]= {2, 3, 5, 7, 11};

Method 3:

int n;

scanf(“%d”,&n);

int arr[n];

for(int i=0;i< 5;i++)

{

scanf(“%d”,&arr[i]);

}

Method 4:

int arr[5];

arr[0]=1;

arr[1]=2;

arr[2]=3;

arr[3]=4;

arr[4]=5;

How Can You Access Elements of Arrays in Data Structures?

Foundation of Data Structure Page 24

The index where you stored the element can be used to access it. Let's talk about it using a code:

 C

#include<stdio.h>

int main()

{

int a[5] = {2, 3, 5, 7, 11};

printf("%d\n",a[0]); // we are accessing

printf("%d\n",a[1]);

printf("%d\n",a[2]);

printf("%d\n",a[3]);

printf("%d",a[4]);

return 0;

}

Output

2

3

5

7

11

Basic operations of array data structure

 Traversal – The array's elements are printed using this operation.

 Insertion – It's used to add an element to a specific index.

 Deletion – It is used to remove an element from a specific index.

 Search – It is used to search for an element using either the value or the specified index.

 Update – This operation updates an element at a specific index.

Traversal operation

Foundation of Data Structure Page 25

The array elements are traversed using this operation. It sequentially prints each element of the

array. The following program will help us to comprehend it.

#include <stdio.h>

void main() {

int Arr[5] = {18, 30, 15, 70, 12};

int i;

printf("Elements of the array are:\n");

for(i = 0; i<5; i++) {

printf("Arr[%d] = %d, ", i, Arr[i]);

}

}

Output

Elements of the array are:

Arr[0] = 18, Arr[1] = 30, Arr[2] = 15, Arr[3] = 70, Arr[4] = 12,

Insertion operation

One or more members are added to the array by using this method. An element can be added to

the array at any index, at the beginning or end, or both, depending on the specifications. Let's see

the implementation of adding an element to the array right away.

 #include <stdio.h>

int main()

{

int arr[20] = { 18, 30, 15, 70, 12 };

int i, x, pos, n = 5;

printf("Array elements before insertion\n");

for (i = 0; i < n; i++)

printf("%d ", arr[i]);

printf("\n");

x = 50; // element to be inserted

Foundation of Data Structure Page 26

pos = 4;

n++;

for (i = n-1; i >= pos; i--)

arr[i] = arr[i - 1];

arr[pos - 1] = x;

printf("Array elements after insertion\n");

for (i = 0; i < n; i++)

printf("%d ", arr[i]);

printf("\n");

return 0;

}

Output

Array elements before insertion

18 30 15 70 12

Array elements after insertion

18 30 15 50 70 12

Deletion operation

As the name suggests, this operation rearranges every element in the array after removing one

element from it.

#include <stdio.h>

void main() {

int arr[] = {18, 30, 15, 70, 12};

int k = 30, n = 5;

int i, j;

printf("Given array elements are :\n");

for(i = 0; i<n; i++) {

printf("arr[%d] = %d, ", i, arr[i]);

}

j = k;

Foundation of Data Structure Page 27

while(j < n) {

arr[j-1] = arr[j];

j = j + 1;

}

n = n -1;

printf("\nElements of array after deletion:\n");

for(i = 0; i<n; i++) {

printf("arr[%d] = %d, ", i, arr[i]);

}

}

Output

Given array elements are :

arr[0] = 18, arr[1] = 30, arr[2] = 15, arr[3] = 70, arr[4] = 12,

Elements of array after deletion:

arr[0] = 18, arr[1] = 30, arr[2] = 15, arr[3] = 70,

Search operation

Using the value or index, this operation is used to search for an element in the array.

#include <stdio.h>

void main() {

int arr[5] = {18, 30, 15, 70, 12};

int item = 70, i, j=0 ;

printf("Given array elements are :\n");

for(i = 0; i<5; i++) {

printf("arr[%d] = %d, ", i, arr[i]);

}

printf("\nElement to be searched = %d", item);

while(j < 5){

if(arr[j] == item) {

break;

Foundation of Data Structure Page 28

}

j = j + 1;

}

printf("\nElement %d is found at %d position", item, j+1);

}

Output

Given array elements are :

arr[0] = 18, arr[1] = 30, arr[2] = 15, arr[3] = 70, arr[4] = 12,

Element to be searched = 70

Element 70 is found at 4 position

Update operation

This action is used to update an array element that is already present and is located at the

specified index.

 #include <stdio.h>

void main() {

int arr[5] = {18, 30, 15, 70, 12};

int item = 50, i, pos = 3;

printf("Given array elements are :\n");

for(i = 0; i<5; i++) {

printf("arr[%d] = %d, ", i, arr[i]);

}

arr[pos-1] = item;

printf("\nArray elements after updation :\n");

for(i = 0; i<5; i++) {

printf("arr[%d] = %d, ", i, arr[i]);

}

}

Output

Foundation of Data Structure Page 29

Given array elements are :

arr[0] = 18, arr[1] = 30, arr[2] = 15, arr[3] = 70, arr[4] = 12,

Array elements after updation :

arr[0] = 18, arr[1] = 30, arr[2] = 50, arr[3] = 70, arr[4] = 12,

Complexity of Array operations

The following table lists the time and space complexity of several array operations..

Advantages of Array

 The group of identically named variables is referred to as an array. As a result, it is

simple to recall the names of all the array's elements.

 It is relatively easy to navigate an array; all we need to do is increase the array's base

address to visit each element one at a time.

 The index can be used to directly access any element in the array.

Disadvantages of Array

 The array is uniform. This implies that it can store elements with similar data types.

 An array has static memory allocation, meaning that its size cannot be changed.

 If we store less elements than the given size, memory will be wasted.

Limitations of arrays

Fixed size in traditional arrays, making resizing difficult.

 Contiguous memory allocation can lead to memory fragmentation.

 Inefficient insertion or deletion operations in fixed-size arrays

Foundation of Data Structure Page 30

CHAPTER FOUR

Linked List

A linked list is a linear data structure which can store a collection of "nodes" connected together

via links i.e. pointers. Linked lists nodes are not stored at a contiguous location, rather they are

linked using pointers to the different memory locations. A node consists of the data value and a

pointer to the address of the next node within the linked list.

A linked list is a dynamic linear data structure whose memory size can be allocated or de-

allocated at run time based on the operation insertion or deletion, this helps in using system

memory efficiently. Linked lists can be used to implement various data structures like a stack,

queue, graph, hash maps, etc.

Representation of a Linked List

This representation of a linked list depicts that each node consists of two fields. The first field

consists of data, and the second field consists of pointers that point to another node.

A linked list starts with a head node which points to the first node. Every node consists of data

which holds the actual data (value) associated with the node and a next pointer which holds the

memory address of the next node in the linked list. The last node is called the tail node in the list

which points to null indicating the end of the list.

https://www.simplilearn.com/what-is-data-article

Foundation of Data Structure Page 31

Creation of Node and Declaration of Linked Lists

struct node

{

 int data;

 struct node * next;

};

struct node * n;

n=(struct node*)malloc(sizeof(struct node*));

It is a declaration of a node that consists of the first variable as data and the next as a pointer,

which will keep the address of the next node.

Here you need to use the malloc function to allocate memory for the nodes dynamically.

Types of Linked Lists

The linked list mainly has three types, they are:

1. Singly Linked List

2. Doubly Linked List

3. Circular Linked List

Singly Linked List

A singly linked list is the most common type of linked list. Each node has data and an address

field that contains a reference to the next node.

Advantages:

https://www.simplilearn.com/tutorials/data-structure-tutorial/singly-linked-list

Foundation of Data Structure Page 32

1. Dynamic Size: Singly linked lists can dynamically grow and shrink in size during

execution, unlike arrays, whose size is fixed at compile time.

2. Efficient Insertions and Deletions: Insertions and deletions at the beginning of the list

are very efficient with singly linked lists, as they require only updating the pointers and

do not involve shifting elements like in arrays.

3. Ease of Implementation: Singly linked lists are relatively easy to implement and

understand compared to other complex data structures like trees and graphs.

4. Memory Efficiency: Singly linked lists consume memory only for the data and the

pointer to the next node, making them memory-efficient when the exact size of the data

structure is unknown.

Disadvantages:

1. No Random Access: Unlike arrays, singly linked lists do not support random access to

elements. Traversal must start from the head node, making operations like accessing the

nth element less efficient.

2. Extra Memory Overhead: Each node in a singly linked list requires extra memory for

storing the pointer to the next node, leading to higher memory overhead compared to

arrays for storing the same amount of data.

3. Traversal Overhead: Traversing a singly linked list requires traversing each node

sequentially from the head to the desired node, which can be slower compared to direct

access in arrays.

Use Cases:

1. Dynamic Data Structures: Singly linked lists are suitable for implementing dynamic

data structures where the size of the data structure changes frequently during runtime.

2. Frequent Insertions and Deletions: Applications that involve frequent insertions and

deletions, especially at the beginning of the list, can benefit from using singly linked lists

due to their efficient insertion and deletion operations.

3. Implementation of Stacks and Queues: Singly linked lists serve as the underlying data

structure for implementing stack and queue data structures, where elements are inserted

and removed from one end of the list.

Foundation of Data Structure Page 33

4. Memory-Constrained Environments: In memory-constrained environments where

contiguous memory allocation is not possible, singly linked lists offer a flexible

alternative for storing and managing data.

Algorithm: Singly Linked List Implementation

1. Define a structure for a node with two components: data and a pointer to the next node.

2. Define a structure for the linked list with a pointer to the head node.

3. Initialize the head pointer to NULL, indicating an empty list.

4. Define functions to perform various operations on the linked list:

 a. Insertion:

 i. Create a new node with the given data.

 ii. If the list is empty, set the new node as the head node.

 iii. Otherwise, traverse the list to the last node.

 iv. Set the next pointer of the last node to the new node.

 b. Deletion:

 i. If the list is empty, return an error.

 ii. If the node to be deleted is the head node, update the head pointer to point to the next

node.

 iii. Otherwise, traverse the list to find the node before the node to be deleted.

 iv. Update the next pointer of the previous node to skip over the node to be deleted.

 v. Free the memory allocated to the deleted node.

 c. Traversal:

 i. Start from the head node.

 ii. Traverse each node in the list using the next pointer until NULL is reached.

 iii. Process each node as required.

5. Provide functions to create and destroy the linked list.

6. Test the implementation with various scenarios to ensure correctness.

End Algorithm

Doubly Linked List

Foundation of Data Structure Page 34

There are two pointer storage blocks in the doubly linked list. The first pointer block in each

node stores the address of the previous node. Hence, in the doubly linked inventory, there are

three fields that are the previous pointers, that contain a reference to the previous node. Then

there is the data, and last you have the next pointer, which points to the next node. Thus, you can

go in both directions (backward and forward).

Advantages of Doubly Linked List:

1. Bidirectional Traversal: Unlike singly linked lists, doubly linked lists allow traversal in

both directions, forward and backward.

2. Insertion and Deletion Efficiency: Insertions and deletions at the beginning, end, or

middle of the list can be done efficiently with constant time complexity, O(1).

3. Memory Overhead: Each node contains two pointers, one for the next node and one for

the previous node, allowing efficient memory utilization and easy navigation.

Disadvantages of Doubly Linked List:

1. Increased Memory Usage: The use of an additional pointer per node increases the

memory overhead compared to singly linked lists.

2. Complexity: Implementing and maintaining doubly linked lists can be more complex

than singly linked lists due to the bidirectional nature of the structure.

3. Overhead for Traversal: While doubly linked lists offer bidirectional traversal, this

capability comes with the cost of additional memory overhead and potentially increased

complexity.

Uses of Doubly Linked List:

Foundation of Data Structure Page 35

1. Implementation of Data Structures: Doubly linked lists are used as a foundational data

structure in various applications such as stacks, queues, and hash tables.

2. Text Editors: Doubly linked lists are commonly used in text editors to implement

features like undo and redo functionality, where bidirectional traversal is essential.

3. Memory Allocation: Doubly linked lists can be used in memory allocation schemes to

manage dynamic memory efficiently.

Algorithm: Doubly Linked List Implementation

1. Define a structure for a node with three components: data, a pointer to the next node, and a

pointer to the previous node.

2. Define a structure for the doubly linked list with pointers to the head and tail nodes.

3. Initialize the head and tail pointers to NULL, indicating an empty list.

4. Define functions to perform various operations on the doubly linked list:

 a. Insertion:

 i. Create a new node with the given data.

 ii. If the list is empty, set the new node as both the head and tail node.

 iii. Otherwise, set the next pointer of the new node to the current head node.

 iv. Set the previous pointer of the current head node to the new node.

 v. Update the head pointer to point to the new node.

 b. Deletion:

 i. If the list is empty, return an error.

 ii. If the node to be deleted is the head node, update the head pointer to point to the next

node.

 iii. If the node to be deleted is the tail node, update the tail pointer to point to the previous

node.

 iv. Otherwise, traverse the list to find the node to be deleted.

 v. Update the next pointer of the previous node to skip over the node to be deleted.

 vi. Update the previous pointer of the next node to skip back to the previous node.

 vii. Free the memory allocated to the deleted node.

 c. Traversal:

 i. Start from the head node.

 ii. Traverse each node in the list using the next pointer until NULL is reached.

Foundation of Data Structure Page 36

 iii. Process each node as required.

5. Provide functions to create and destroy the doubly linked list.

6. Test the implementation with various scenarios to ensure correctness.

End Algorithm

Circular Linked List

The circular linked list is extremely similar to the singly linked list. The only difference is that

the last node is connected with the first node, forming a circular loop in the circular linked list.

Advantages of Circular Linked List:

1. Efficient Memory Utilization: Circular linked lists can efficiently utilize memory since

each node only requires a pointer to the next node, and the last node points back to the

first node, forming a loop.

2. Dynamic Size: Circular linked lists can dynamically grow and shrink during runtime by

adding or removing nodes without the need to resize the structure.

3. Circular Traversal: Circular linked lists allow for circular traversal, meaning that after

reaching the last node, the traversal continues from the first node, making it suitable for

applications where continuous looping is required.

Disadvantages of Circular Linked List:

https://www.simplilearn.com/tutorials/data-structure-tutorial/circular-linked-list

Foundation of Data Structure Page 37

1. Complexity: Implementing and maintaining circular linked lists can be more complex

compared to linear linked lists due to the circular nature of the structure, which requires

careful handling to avoid infinite loops or memory leaks.

2. Traversal Complexity: Circular traversal can lead to infinite loops if not implemented

properly, posing challenges for operations like searching or traversing the entire list.

Uses of Circular Linked List:

1. Circular Buffer: Circular linked lists are used to implement circular buffers or queues,

where data items are stored in a fixed-size buffer and accessed in a circular manner.

2. Round-Robin Scheduling: Circular linked lists are employed in operating system

scheduling algorithms like round-robin scheduling, where processes are scheduled in a

circular order.

3. Game Development: Circular linked lists can be utilized in game development for

managing game objects or entities that need to loop through a sequence of actions or

events.

Algorithm for Circular Linked List Implementation:

1. Define a structure for a node with two components: data and a pointer to the next node.

2. Define a structure for the circular linked list with a pointer to the head node.

3. Initialize the head pointer to NULL, indicating an empty list.

4. Define functions to perform various operations on the circular linked list:

 a. Insertion:

 i. Create a new node with the given data.

 ii. If the list is empty, set the new node as both the head node and the last node.

 iii. Otherwise, traverse the list to reach the last node.

 iv. Set the next pointer of the last node to point to the new node.

 v. Set the next pointer of the new node to point back to the head node.

 vi. Update the head pointer to point to the new node if inserting at the beginning.

 b. Deletion:

 i. If the list is empty, return an error.

 ii. If there is only one node in the list, free the memory allocated to the node and set the

head pointer to NULL.

Foundation of Data Structure Page 38

 iii. Otherwise, traverse the list to find the node to be deleted.

 iv. Update the next pointer of the previous node to skip over the node to be deleted.

 v. Free the memory allocated to the deleted node.

 c. Traversal:

 i. If the list is empty, return.

 ii. Start from the head node and traverse each node in the list using the next pointer until

reaching the head node again.

 iii. Process each node as required.

5. Provide functions to create and destroy the circular linked list.

6. Test the implementation with various scenarios to ensure correctness.

End Algorithm

Circular link lists can either be singly or doubly-linked lists.

 The next node's next pointer will point to the first node to form a singly linked list.

 The previous pointer of the first node keeps the address of the last node to form a doubly-

linked list.

Basic Operations in Linked List

The basic operations in the linked lists are insertion, deletion, searching, display, and deleting an

element at a given key. These operations are performed on Singly Linked Lists as given below −

 Insertion − Adds an element at the beginning of the list.

 Deletion − Deletes an element at the beginning of the list.

 Display − Displays the complete list.

 Search − Searches an element using the given key.

 Delete − Deletes an element using the given key.

Linked List - Insertion Operation

Adding a new node in linked list is a more than one step activity. We shall learn this with

diagrams here. First, create a node using the same structure and find the location where it has to

be inserted.

Foundation of Data Structure Page 39

Imagine that we are inserting a node B (NewNode), between A (LeftNode) and C (RightNode).

Then point B.next to C −

NewNode.next -> RightNode;

It should look like this −

Now, the next node at the left should point to the new node.

LeftNode.next -> NewNode;

This will put the new node in the middle of the two. The new list should look like this −

Foundation of Data Structure Page 40

Insertion in linked list can be done in three different ways. They are explained as follows −

Insertion at Beginning

In this operation, we are adding an element at the beginning of the list.

Algorithm

1. START

2. Create a node to store the data

3. Check if the list is empty

4. If the list is empty, add the data to the node and

 assign the head pointer to it.

5. If the list is not empty, add the data to a node and link to the

 current head. Assign the head to the newly added node.

6. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

struct node {

 int data;

 struct node *next;

};

struct node *head = NULL;

struct node *current = NULL;

// display the list

void printList(){

 struct node *p = head;

 printf("\n[");

Foundation of Data Structure Page 41

 //start from the beginning

 while(p != NULL) {

 printf(" %d ",p->data);

 p = p->next;

 }

 printf("]");

}

//insertion at the beginning

void insertatbegin(int data){

 //create a link

 struct node *lk = (struct node*) malloc(sizeof(struct node));

 lk->data = data;

 // point it to old first node

 lk->next = head;

 //point first to new first node

 head = lk;

}

void main(){

 int k=0;

 insertatbegin(12);

 insertatbegin(22);

 insertatbegin(30);

 insertatbegin(44);

 insertatbegin(50);

 printf("Linked List: ");

 // print list

 printList();

}

Foundation of Data Structure Page 42

Output

Linked List:

[50 44 30 22 12]

Insertion at Ending

In this operation, we are adding an element at the ending of the list.

Algorithm

1. START

2. Create a new node and assign the data

3. Find the last node

4. Point the last node to new node

5. END

Insertion at a Given Position

In this operation, we are adding an element at any position within the list.

Algorithm

1. START

2. Create a new node and assign data to it

3. Iterate until the node at position is found

4. Point first to new first node

5. END

Example

Linked List - Deletion Operation

Deletion is also a more than one step process. We shall learn with pictorial representation. First,

locate the target node to be removed, by using searching algorithms.

Foundation of Data Structure Page 43

The left (previous) node of the target node now should point to the next node of the target node −

LeftNode.next -> TargetNode.next;

This will remove the link that was pointing to the target node. Now, using the following code, we

will remove what the target node is pointing at.

TargetNode.next -> NULL;

We need to use the deleted node. We can keep that in memory otherwise we can simply

deallocate memory and wipe off the target node completely.

Foundation of Data Structure Page 44

Similar steps should be taken if the node is being inserted at the beginning of the list. While

inserting it at the end, the second last node of the list should point to the new node and the new

node will point to NULL.

Deletion in linked lists is also performed in three different ways. They are as follows −

Deletion at Beginning

In this deletion operation of the linked, we are deleting an element from the beginning of the list.

For this, we point the head to the second node.

Algorithm

1. START

2. Assign the head pointer to the next node in the list

3. END

Linked List - Reversal Operation

This operation is a thorough one. We need to make the last node to be pointed by the head node

and reverse the whole linked list.

First, we traverse to the end of the list. It should be pointing to NULL. Now, we shall make it

point to its previous node −

Foundation of Data Structure Page 45

We have to make sure that the last node is not the last node. So we'll have some temp node,

which looks like the head node pointing to the last node. Now, we shall make all left side nodes

point to their previous nodes one by one.

Except the node (first node) pointed by the head node, all nodes should point to their

predecessor, making them their new successor. The first node will point to NULL.

We'll make the head node point to the new first node by using the temp node.

Algorithm

Step by step process to reverse a linked list is as follows −

1. START

2. We use three pointers to perform the reversing:

 prev, next, head.

3. Point the current node to head and assign its next value to

 the prev node.

4. Iteratively repeat the step 3 for all the nodes in the list.

5. Assign head to the prev node.

Foundation of Data Structure Page 46

Linked List - Search Operation

Searching for an element in the list using a key element. This operation is done in the same way

as array search; comparing every element in the list with the key element given.

Algorithm

1 START

2 If the list is not empty, iteratively check if the list

 contains the key

3 If the key element is not present in the list, unsuccessful

 search

4 END

Linked Lists vs Arrays

Linked lists and arrays are both data structures used to store collections of elements, but they

have different characteristics and are suitable for different scenarios. Let's compare them across

various aspects:

1. Memory Allocation:

o Arrays: Contiguous block of memory is allocated to store elements. Memory is

allocated at once, and the size typically cannot be changed dynamically.

o Linked Lists: Elements are stored in nodes, where each node contains the data

and a pointer/reference to the next node. Nodes can be scattered in memory, and

memory is allocated dynamically as nodes are added.

2. Insertion and Deletion:

o Arrays: Insertion and deletion operations can be inefficient, especially in the

middle, as elements may need to be shifted.

o Linked Lists: Insertion and deletion operations are generally efficient, as they

involve changing pointers to rearrange the structure.

3. Access Time:

o Arrays: Random access to elements is fast using indices. Access time is O(1).

Foundation of Data Structure Page 47

o Linked Lists: Access time is slower compared to arrays for random access, as

elements must be traversed sequentially. Access time is O(n).

4. Memory Efficiency:

o Arrays: May waste memory if the size is greater than needed, especially if the

size needs to be dynamic.

o Linked Lists: Typically more memory-efficient as memory is allocated

dynamically for each element.

5. Dynamic Size:

o Arrays: Size is fixed once allocated. Dynamic resizing may involve creating a

new array and copying elements.

o Linked Lists: Can easily grow or shrink in size by adding or removing nodes.

6. Implementation Complexity:

o Arrays: Simpler to implement, with basic operations like indexing.

o Linked Lists: More complex to implement due to pointer manipulation, but offer

flexibility and efficiency in certain scenarios.

7. Cache Performance:

o Arrays: Better cache performance due to contiguous memory allocation, which

improves locality of reference.

o Linked Lists: Poor cache performance as nodes may be scattered in memory,

leading to more cache misses.

8. Use Cases:

o Arrays: Suitable for scenarios where random access and fixed size are required,

such as mathematical computations, lookup tables, and when memory usage is

known in advance.

o Linked Lists: Suitable for scenarios where dynamic size, efficient

insertion/deletion, and flexibility are required, such as implementing stacks,

queues, and when memory usage may vary dynamically.

Some of the applications for linked lists are as follows:

 A linked list can be used to implement stacks and queues.

 A linked list can also be used to implement graphs whenever we have to represent graphs

as adjacency lists.

Foundation of Data Structure Page 48

 A mathematical polynomial can be stored as a linked list.

 In the case of hashing technique, the buckets used in hashing are implemented using the

linked lists.

 Whenever a program requires dynamic allocation of memory, we can use a linked list as

linked lists work more efficiently in this case.

Foundation of Data Structure Page 49

CHAPTER FIVE

Stack in Data Structures

The stack data structure is a linear data structure that accompanies a principle known as LIFO

(Last In First Out) or FILO (First In Last Out). Real-life examples of a stack are a deck of cards,

piles of books, piles of money, and many more.

This example allows you to perform operations from one end only, like when you insert and

remove new books from the top of the stack. It means insertion and deletion in the stack data

structure can be done only from the top of the stack. You can access only the top of the stack at

any given point in time.

 Inserting a new element in the stack is termed a push operation.

 Removing or deleting elements from the stack is termed pop operation.

https://www.simplilearn.com/tutorials/data-structure-tutorial/what-is-data-structure

Foundation of Data Structure Page 50

Stack Representation in Data Structures

Working of Stack in Data Structures

Now, assume that you have a stack of books. You can only see the top, i.e., the top-most book,

namely 40, which is kept top of the stack.

If you want to insert a new book first, namely 50, you must update the top and then insert a new

text. And if you want to access any other book other than the topmost book that is 40, you first

remove the topmost book from the stack, and then the top will point to the next topmost book.

Foundation of Data Structure Page 51

After working on the representation of stacks in data structures, you will see some basic

operations performed on the stacks in data structures.

Basic Operations on Stack in Data Structures

There following are some operations that are implemented on the stack.

Push Operation

Push operation involves inserting new elements in the stack. Since you have only one end to

insert a unique element on top of the stack, it inserts the new element at the top of the stack.

Pop Operation

Pop operation refers to removing the element from the stack again since you have only one end

to do all top of the stack. So removing an element from the top of the stack is termed pop

operation.

Foundation of Data Structure Page 52

Peek Operation: Peek operation refers to retrieving the topmost element in the stack without

removing it from the collections of data elements.

isFull(): isFull function is used to check whether or not a stack is empty.

isEmpty(): isEmpty function is used to check whether or not a stack is empty.

First, you will learn about the functions:

isFull()

The following is the algorithm of the isFull() function:

begin

 If

 top equals to maxsize

 return true

else

 return false

else if

end

The implementation of the isFull() function is as follows:

Bool isFull()

{

 if(top == maxsize)

 return true;

else

 return false;

}

Foundation of Data Structure Page 53

isEmpty()

The following is the algorithm of the isEmpty() function:

begin

 If

 topless than 1

 return true

else

 return false

else if

end

The implementation of the isEmpty() function is:

Bool isEmpty()

{

 if(top = = -1)

 return true;

else

 return false;

}

Push Operation

Push operation includes various steps, which are as follows :

Step 1: First, check whether or not the stack is full

Foundation of Data Structure Page 54

Step 2: If the stack is complete, then exit

Step 3: If not, increment the top by one

Step 4: Insert a new element where the top is pointing

Step 5: Success

The algorithm of the push operation is:

Begin push: stack, item

If the stack is complete, return null

end if

top ->top+1;

stack[top] <- item

end

This is how you implement a push operation:

if(! isFull ())

{

top = top + 1;

stack[top] = item;

}

else {

 printf(“stack is full”);

}

Pop Operation

Foundation of Data Structure Page 55

Step 1: First, check whether or not the stack is empty

Step 2: If the stack is empty, then exit

Step 3: If not, access the topmost data element

Step 4: Decrement the top by one

Step 5: Success

The following is the algorithm of the pop operation:

Begin pop: stack

If the stack is empty

 return null

end if

item -> stack[top] ;

Top -> top - 1;

Return item;

end

 Implementing a pop operation is as follows:

int pop(int item){

If isEmpty()) {

item = stack[top];

top = top - 1;

Foundation of Data Structure Page 56

return item;

}

else{

printf(“stack if empty”);

}

}

Peek Operation

The algorithm of a peek operation is:

begin to peek

return stack[top];

end

The implementation of the peek operation is:

int peek()

{

return stack[top];

}

Implementation of Stack in Data Structures

You can perform the implementation of stacks in data structures using two data structures that

are an array and a linked list.

Foundation of Data Structure Page 57

 Array: In array implementation, the stack is formed using an array. All the operations are

performed using arrays. You will see how all operations can be implemented on the stack

in data structures using an array data structure.

 Linked-List: Every new element is inserted as a top element in the linked list

implementation of stacks in data structures. That means every newly inserted element is

pointed to the top. Whenever you want to remove an element from the stack, remove the

node indicated by the top, by moving the top to its previous node in the list.

https://www.simplilearn.com/tutorials/data-structure-tutorial/stack-implementation-using-array
https://www.simplilearn.com/tutorials/data-structure-tutorial/stack-implementation-using-array
https://www.simplilearn.com/tutorials/data-structure-tutorial/stack-implementation-using-linked-list
https://www.simplilearn.com/tutorials/data-structure-tutorial/stack-implementation-using-linked-list

Foundation of Data Structure Page 58

Application of Stack in Data Structures

 Expression Evaluation and Conversion

 Backtracking

 Function Call

 Parentheses Checking

 String Reversal

 Syntax Parsing

 Memory Management

1. Expression Evaluation and Conversion

There are three types of expression that you use in programming, they are:

Infix Expression: An infix expression is a single letter or an operator preceded by one single

infix string followed by another single infix string.

 X

https://www.simplilearn.com/how-to-learn-programming-article

Foundation of Data Structure Page 59

 X + Y

 (X + Y) + (A - B)

Prefix Expression: A prefix expression is a single letter or an operator followed by two prefix

strings.

 X

 + X Y

 + + X Y - A B

Postfix Expression: A postfix expression (also called Reverse Polish Notation) is a single letter

or an operator preceded by two postfix strings.

 X

 X Y +

 X Y + C D - +

Similarly, the stack is used to evaluate these expressions and convert these expressions like infix

to prefix or infix to postfix.

2. Backtracking

Backtracking is a recursive algorithm mechanism that is used to solve optimization problems.

To solve the optimization problem with backtracking, you have multiple solutions; it does not

matter if it is correct. While finding all the possible solutions in backtracking, you store the

previously calculated problems in the stack and use that solution to resolve the following issues.

The N-queen problem is an example of backtracking, a recursive algorithm where the stack is

used to solve this problem.

3. Function Call

Whenever you call one function from another function in programming, the reference of calling

function stores in the stack. When the function call is terminated, the program control moves

back to the function call with the help of references stored in the stack.

Foundation of Data Structure Page 60

So stack plays an important role when you call a function from another function.

4. Parentheses Checking

Stack in data structures is used to check if the parentheses like (), { } are valid or not in

programing while matching opening and closing brackets are balanced or not.

So it stores all these parentheses in the stack and controls the flow of the program.

For e.g ((a + b) * (c + d)) is valid but {{a+b})) *(b+d}] is not valid.

5. String Reversal

Another exciting application of stack is string reversal. Each character of a string gets stored in

the stack.

The string's first character is held at the bottom of the stack, and the last character of the string is

held at the top of the stack, resulting in a reversed string after performing the pop operation.

6. Syntax Parsing

Since many programming languages are context-free languages, the stack is used for syntax

parsing by many compilers.

7. Memory Management

Memory management is an essential feature of the operating system, so the stack is heavily used

to manage memory.

Foundation of Data Structure Page 61

CHAPTER SIX

Queue in Data Structure

Queue in data structures is a linear collection of different data types which follow a specific

order while performing various operations. It can only be modified by the addition of data

entities at one end or the removal of data entities at another. By convention, the end where

insertion is performed is called Rear, and the end at which deletion takes place is known as the

Front.

These constraints of queue make it a First-In-First-Out (FIFO) data structure, i.e., the data

element inserted first will be accessed first, and the data element inserted last will be accessed

last. This is equivalent to the requirement that once an additional data element is added, all

previously added elements must be removed before the new element can be removed. That‟s

why more abstractly, a queue in a data structure is considered being a sequential collection.

Once you are clear with the key terms related to a queue data structure, you will now look at its

representation details.

Queue Representation

Before dealing with the representation of a queue, examine the real-life example of the queue to

understand it better. The movie ticket counter is an excellent example of a queue where the

customer that came first will be served first. Also, the barricades of the movie ticket counter stop

in-between disruption to attain different operations at different ends.

Foundation of Data Structure Page 62

The queue in the data structure acts the same as the movie ticket counter. Both the ends of this

abstract data structure remain open. Further, the insertion and deletion processes also operate

analogously to the wait-up line for tickets.

The following diagram tries to explain queue representation as a data structure:

A queue can be implemented using Arrays, Linked-lists, Pointers, and Structures. The

implementation using one-dimensional arrays is the easiest method of all the mentioned

methods.

With this understanding of queue representation, look at the different operations that can be

performed on the queues in data structures.

Basic Operations for Queue in Data Structure

Unlike arrays and linked lists, elements in the queue cannot be operated from their respective

locations. They can only be operated at two data pointers, front and rear. Also, these operations

involve standard procedures like initializing or defining data structure, utilizing it, and then

wholly erasing it from memory. Here, you must try to comprehend the operations associated with

queues:

 Enqueue() - Insertion of elements to the queue.

 Dequeue() - Removal of elements from the queue.

 Peek() - Acquires the data element available at the front node of the queue without

deleting it.

 isFull() - Validates if the queue is full.

https://www.simplilearn.com/tutorials/data-structure-tutorial/arrays-in-data-structure
https://www.simplilearn.com/tutorials/data-structure-tutorial/types-of-linked-list

Foundation of Data Structure Page 63

 isNull() - Checks if the queue is empty.

When you define the queue data structure, it remains empty as no element is inserted into it. So,

both the front and rear pointer should be set to -1 (Null memory space). This phase is known as

data structure declaration in the context of programming.

First, understand the operations that allow the queue to manipulate data elements in a hierarchy.

Enqueue() Operation

The following steps should be followed to insert (enqueue) data element into a queue -

 Step 1: Check if the queue is full.

 Step 2: If the queue is full, Overflow error.

 Step 3: If the queue is not full, increment the rear pointer to point to the next available

empty space.

 Step 4: Add the data element to the queue location where the rear is pointing.

 Step 5: Here, you have successfully added 7, 2, and -9.

Foundation of Data Structure Page 64

Dequeue() Operation

Obtaining data from the queue comprises two subtasks: access the data where the front is

pointing and remove the data after access. You should take the following steps to remove data

from the queue -

 Step 1: Check if the queue is empty.

 Step 2: If the queue is empty, Underflow error.

 Step 3: If the queue is not empty, access the data where the front pointer is pointing.

 Step 4: Increment front pointer to point to the next available data element.

 Step 5: Here, you have removed 7, 2, and -9 from the queue data structure.

Now that you have dealt with the operations that allow manipulation of data entities, you will

encounter supportive functions of the queues -

Peek() Operation

This function helps in extracting the data element where the front is pointing without removing it

from the queue. The algorithm of Peek() function is as follows-

Foundation of Data Structure Page 65

 Step 1: Check if the queue is empty.

 Step 2: If the queue is empty, return “Queue is Empty.”

 Step 3: If the queue is not empty, access the data where the front pointer is pointing.

 Step 4: Return data.

isFull() Operation

This function checks if the rear pointer is reached at MAXSIZE to determine that the queue is

full. The following steps are performed in the isFull() operation -

 Step 1: Check if rear == MAXSIZE - 1.

 Step 2: If they are equal, return “Queue is Full.”

 Step 3: If they are not equal, return “Queue is not Full.”

isNull() Operation

The algorithm of the isNull() operation is as follows -

 Step 1: Check if the rear and front are pointing to null memory space, i.e., -1.

 Step 2: If they are pointing to -1, return “Queue is empty.”

 Step 3: If they are not equal, return “Queue is not empty.”

Now that you have covered all the queue operations, you will discover a few applications of the

queue.

Applications of Queue

Queue, as the name suggests, is utilized when you need to regulate a group of objects in order.

This data structure caters to the need for First Come First Serve problems in different software

applications. The scenarios mentioned below are a few systems that use the queue data structure

to serve their needs -

Foundation of Data Structure Page 66

 Printers: Queue data structure is used in printers to maintain the order of pages while

printing.

 Interrupt handling in computes: The interrupts are operated in the same order as they

arrive, i.e., interrupt which comes first, will be dealt with first.

 Process scheduling in Operating systems: Queues are used to implement round-robin

scheduling algorithms in computer systems.

 Switches and Routers: Both switch and router interfaces maintain ingress (inbound) and

egress (outbound) queues to store packets.

 Customer service systems: It develops call center phone systems using the concepts of

queues.

 CPU scheduling and disk scheduling, where one resource is shared among various

consumers

 IO Buffers, files, and Pipes IO, where data is transferred asynchronously between two

processes

 Semaphores in the operating system

 FCFS (First Come First Serve) scheduling

 Spooling in printers

Foundation of Data Structure Page 67

 Queue in routers and switches in networking

Differences Between Stack and Queue

Parameter for

Comparison

Stack Queue

Operational

principle

Follows Last In First Out or First

In Last Out principle

Follows First In First Out or Last In Last

Out principle

Structure

Insertion and deletion both take

place from one end called as top

Insertion occurs at the rear end, whereas

deletion happens at the front end

Number of

pointers required

It contains only one pointer

known as top, which stores the

reference of the topmost element

It contains two pointers named front

(holds the address of the first element in a

list) and rear (holds the address of last

queue element)

Primary

operations

push(x) and pop() are two

primary queue operations

Enqueue() and Dequeue() are two primary

data manipulation operations

Condition to check

empty state

If top == -1, the stack is

considered as empty

If front == -1 && rear == -1, the queue is

considered as empty

Condition to check

full state

If top == MaxSize - 1, the stack

is considered as full

If rear == Maxsize - 1, the queue is

considered as full

Implementation Easy implementation Little complex implementation

Problem

Solving

This data structure is used to

solve recursive problems.

This data structure is used to solve

problems that require sequential

processing.

Foundation of Data Structure Page 68

CHAPTER SEVEN

Non Linear Data Structure

Non-linear data structures are those where data items are not arranged in a sequential manner,

unlike linear data structures. In these data structures, elements are stored in a hierarchical or a

network-based structure that does not follow a sequential order. These data structures allow

efficient searching, insertion, and deletion of elements from the structure.

Examples of Non Linear Data Structures:

 Trees

 Graphs, etc.

Properties of Non Linear Data Structures

The Non-linear data structures have the following properties.

 Non-linear data structures do not follow a sequential order.

 Elements are stored in a hierarchical or a network-based structure.

 These data structures allow efficient searching, insertion, and deletion of elements.

 Non-linear data structures are used to solve complex problems where data cannot be

arranged in a linear manner.

Tree Data Structure

A tree is a non-linear data structure in which data is stored in a hierarchical structure. It is a

collection of nodes connected by edges. Each node has a parent node and zero or more child

nodes. The node that is present at the top of the hierarchy is called the root node. Trees are

widely used in computer science and are an essential part of many algorithms and data structures.

https://www.prepbytes.com/blog/tree/tree-in-data-structure-definition-types-and-traversing/

Foundation of Data Structure Page 69

Binary Tree Data Structure

A binary tree is a tree-type non-linear data structure with a maximum of two children for each

parent. Every node in a binary tree has a left and right reference along with the data element.

The node at the top of the hierarchy of a tree is called the root node. The nodes that hold other

sub-nodes are the parent nodes.

A parent node has two child nodes: the left child and right child. Hashing, routing data for

network traffic, data compression, preparing binary heaps, and binary search trees are some of

the applications that use a binary tree.

Foundation of Data Structure Page 70

Terminologies associated with Binary Trees and Types of Binary Trees

 Node: It represents a termination point in a tree.

 Root: A tree‟s topmost node.

 Parent: Each node (apart from the root) in a tree that has at least one sub-node of its own

is called a parent node.

 Child: A node that straightway came from a parent node when moving away from the

root is the child node.

 Leaf Node: These are external nodes. They are the nodes that have no child.

 Internal Node: As the name suggests, these are inner nodes with at least one child.

 Depth of a Tree: The number of edges from the tree‟s node to the root is.

 Height of a Tree: It is the number of edges from the node to the deepest leaf. The tree

height is also considered the root height.

Understanding Properties of Binary Tree Or What Is Binary Tree?

At every level of it, the maximum number allowed for nodes stands at 2i.

The height of a binary tree stands defined as the longest path emanating from a root node to the

tree‟s leaf node.

What Is Binary Tree– More Than The Binary Tree Definition

Say a binary tree placed at a height equal to 3. In that case, the highest number of nodes for this

height 3 stands equal to 15, that is, (1+2+4+8) = 15. In basic terms, the maximum node

number possible for this height h is (2
0
 + 2

1
 + 2

2
+….2

h
) = 2

h+1
 -1.

Now, for the minimum node number that is possible at this height h, it comes as equal to h+1.

If there are a minimum number of nodes, then the height of a binary tree would stand aa

maximum. On the other hand, when there is a number of a node at its maximum, then the binary

tree m height will be minimum. If there exists around „n‟ number nodes in a binary tree, here is a

calculation to clarify the binary tree definition.

The tree‟s minimum height is computed as:

Foundation of Data Structure Page 71

n = 2h+1 -1

n+1 = 2h+1

Taking log for both sides now,

log2(n+1) = log2(2h+1)

log2(n+1) = h+1

h = log2(n+1) – 1

The highest height will be computed as:

n = h+1

h= n-1

Foundation of Data Structure Page 72

Binary Tree Components

There are three binary tree components. Every binary tree node has these three components

associated with it. It becomes an essential concept for programmers to understand these

three binary tree components:

1. Data element

2. Pointer to left subtree

3. Pointer to right subtree

Foundation of Data Structure Page 73

These three binary tree components represent a node. The data resides in the middle. The left

pointer points to the child node, forming the left sub-tree. The right pointer points to the child

node at its right, creating the right subtree. .

Types of Binary Trees

There are various types of binary trees, and each of these binary tree types has unique

characteristics. Here are each of the binary tree types in detail:

1. Full Binary Tree

It is a special kind of a binary tree that has either zero children or two children. It means that all

the nodes in that binary tree should either have two child nodes of its parent node or the parent

node is itself the leaf node or the external node.

In other words, a full binary tree is a unique binary tree where every node except the external

node has two children. When it holds a single child, such a binary tree will not be a full binary

tree. Here, the quantity of leaf nodes is equal to the number of internal nodes plus one. The

equation is like L=I+1, where L is the number of leaf nodes, and I is the number of internal

nodes.

Here is the structure of a full binary tree:

Foundation of Data Structure Page 74

2. Complete Binary Tree

A complete binary tree is another specific type of binary tree where all the tree levels are filled

entirely with nodes, except the lowest level of the tree. Also, in the last or the lowest level of this

binary tree, every node should possibly reside on the left side. Here is the structure of a complete

binary tree:

3. Perfect Binary Tree

A binary tree is said to be „perfect‟ if all the internal nodes have strictly two children, and every

external or leaf node is at the same level or same depth within a tree. A perfect binary tree having

height „h‟ has 2h – 1 node. Here is the structure of a perfect binary tree:

4. Balanced Binary Tree

A binary tree is said to be „balanced‟ if the tree height is O(logN), where „N‟ is the number of

nodes. In a balanced binary tree, the height of the left and the right subtrees of each node should

https://www.upgrad.com/blog/binary-tree-in-data-structure/

Foundation of Data Structure Page 75

vary by at most one. An AVL Tree and a Red-Black Tree are some common examples of data

structure that can generate a balanced binary search tree. Here is an example of a balanced binary

tree:

5. Degenerate Binary Tree

A binary tree is said to be a degenerate binary tree or pathological binary tree if every internal

node has only a single child. Such trees are similar to a linked list performance-wise. Here is an

example of a degenerate binary tree:

Benefits of a Binary Tree

 The search operation in a binary tree is faster as compared to other trees

 Only two traversals are enough to provide the elements in sorted order

 It is easy to pick up the maximum and minimum elements

 Graph traversal also uses binary trees

 Converting different postfix and prefix expressions are possible using binary trees

Special Types of Binary Trees

Binary trees can also be grouped according to node values. The types of binary tree according

to node structure include the following:

 Binary Search Tree

A binary search tree comes with the following properties:

Foundation of Data Structure Page 76

 In the left subtree of any node, you will find nodes with keys smaller than the node‟s key.

 The right subtree of any node will include nodes with keys larger than the node‟s key.

 The left, as well as the right subtree, will be types of binary search tree.

Binary Search Tree: It is a special type of binary tree in which the value of the left node is

always smaller than the root node which is always smaller than the right node.

Binary Search Tree (BST):

A Binary Search Tree is a hierarchical data structure that follows the principles of binary search.

Here's a breakdown:

1. Features:

o Ordered Structure: In a BST, each node has a key, and keys are arranged in a

specific order (e.g., in an ascending order from left to right).

o Efficient Searching: Due to its ordered structure, BSTs enable efficient

searching, insertion, and deletion operations. The time complexity for these

operations is O(log n) on average and O(n) in the worst case.

o Recursive Definition: Each subtree of a BST is also a BST, which makes it

convenient for recursive algorithms.

2. Implementation:

o Each node in a BST contains a key (value) and references to its left and right

children.

o The key of each node must be greater than all keys in its left subtree and less than

all keys in its right subtree.

o Insertions and deletions in a BST require maintaining the BST properties by

adjusting the structure as needed (e.g., through rotations).

3. Example: Let's say we have the following keys to be inserted into a BST: 50, 30, 70, 20,

40, 60, 80.

Inserting them in the order mentioned will create a BST where each node's left child

has a smaller value, and each node's right child has a larger value.

The resulting BST might look like this:

Foundation of Data Structure Page 77

 50

 / \

o 30 70

o / \ /

20 40 60 80

AVL Tree: An AVL binary tree in DSA is self-balanced. In such a tree, the difference between

the heights of the left and right subtrees for all nodes cannot be greater than one. So, the nodes in

the right as well as left subtrees of the AVL tree will be one or less than that. An AVL tree is a

self-balancing binary search tree. The balancing factor is either 1, -1, or 0.

Red-black Tree: A red-black tree is a type of binary tree that is self-balanced and each node in it

is either colored either red or black. The colors in a red black binary tree in data structure are

useful for keeping the whole tree balanced during deletions and insertions. The balance of a red

black tree won‟t be perfect. But these binary trees are perfect for bringing down the search time.

Foundation of Data Structure Page 78

 B-tree: A B-tree is a self-balancing tree data structure that is commonly used in file

systems and DBMS as they facilitate the fast feature of fast searching.

Foundation of Data Structure Page 79

B- Tree

A B- Tree is a type of self-balanced search tree in data structures. These binary trees support

smooth access, deletion, and insertion of data items. B- trees are particularly common in file

systems and databases.

Among the different types of binary tree, a B- tree helps with efficient storage and retrieval of

large volumes of data. A fixed maximum degree or order is a key characteristic of a B- tree. This

fixed value helps determine the total number of child nodes in a parent node.

The nodes present in a B- binary tree can include several keys and child nodes. The keys of a B-

binary tree in algorithm design can help in indexing and locating data items.

B+ Tree

A binary tree in data structure can also be classified as B+, which is one variant of the B- tree.

Since a B+ tree comes with a fixed maximum degree, it enables efficient insertion, access, and

deletion of data items. But a B+ binary tree includes all data items inside the leaf nodes.

The internal nodes of a B+ binary tree only include keys for locating and indexing data items.

Due to this design, searches using a B+ tree will be a lot faster, and you will also be able to

access data items sequentially. Moreover, the leaf nodes of a binary tree remain together in a

linked list.

Segment Tree

If you look into a binary tree and its types, you will come across one category called the segment

or statistic tree. This type of binary tree is usually responsible for storing information related to

different segments or intervals. With a segment tree, you will be able to perform querying of the

stored segments in a specific point.

Among the different types of binary tree in data structure, you will realize that a segment tree is

static. Therefore, you won‟t be able to modify the structure of a segment tree after it has been

built.

Foundation of Data Structure Page 80

Applications of Binary Tree in Data Structure

If you want to read more on binary tree in data structure, you should learn about their

applications. Binary search trees are quite suitable for the following purposes:

 Search Algorithms: An algorithm for binary search tree can efficiently find a specific

element. The search can be executed in O u(log n) time complexity, where n defines the

number of nodes. A binary search tree is often useful for quickly finding particular

elements in a sorted list.

 Database Systems: With each node of a binary tree representing a record, data can be

stored in a database system. As a result, search operations may be completed quickly, and

the database system can manage massive volumes of data.

 Decision Trees: Binary trees are a sort of machine learning technique that may be used

to create decision trees. These decision trees are highly useful for regression analysis and

classification.

 File Systems: File systems can be implemented using binary trees, in which every node

corresponds to a directory or file. This enables quick and easy file system browsing and

searching.

 Compression Algorithms: An algorithm for binary search tree in data structure can be

useful for Huffman coding. A compression algorithm is responsible for assigning

variable-length codes to characters according to their occurrence frequency in the input

data.

 Game AI: Game AI can be implemented using binary trees, where every node indicates a

potential move in the game. The optimal move can be found by the AI algorithm

searching the tree.

 Sorting Algorithms: An algorithm of binary tree can also be used for efficient sorting.

For instance, the search tree sort and heap sort are quite beneficial.

Why Should You Use a Binary Tree in Data Structure?

Once you learn about a binary tree and its types, you should try to figure out the benefits of these

structures. Some key advantages of using a binary tree model include:

Foundation of Data Structure Page 81

 Ordered Traversal: Binary trees are structured in such a way that you will succeed in

traversing them in a particular order, such as post-order, in-order, and pre-order. As a

result, you will succeed in performing operations on the nodes in a particular order. For

instance, you will be able to easily print nodes in a sorted order.

 Efficient Searching: A binary tree in data structure can be efficiently used to find a

particular element. Each node comes with a maximum of two child nodes. So, search

operations can be easily performed with the O(log n) time complexity.

 Fast Insertion and Deletion: Insertions and deletions can be done with binary trees in

O(log n) time complexity. They are also a wise option for applications like database

systems that need dynamic data structures.

 Memory Efficient: Since binary trees only need two child pointers per node, they are

comparatively memory-efficient when compared to other tree designs. This implies that

they can be utilized to maintain effective search functions even when storing substantial

volumes of data in memory.

 Valuable for Sorting: If you understand the binary tree terminology in data structure,

you will realize that it is extremely efficient for sorting. Therefore, you will find binary

trees to be highly beneficial for heap sort and similar operations.

 Easy to Implement: It is quite simple and easy to understand and implement binary tree

structures. That‟s why binary tree algorithms are highly suitable for a large number of

real-life applications.

Disadvantages of Binary Tree Structures

While a binary tree in data structure is highly beneficial, it also has some shortcomings. A few

reasons why binary trees might not be beneficial include:

 Limited Structure: Every binary tree comes with a maximum of two children in each

node. While it is a boon in many ways and makes these structures memory efficient, it is

also a disadvantage. Due to their limited structure, binary trees cannot be used in certain

cases. For instance, some trees require each node to have more than two children. In that

case, a different tree format needs to be used in a data structure.

 Space Inefficiency: Binary trees are not as space efficient as some other types of data

structures. Every node needs two child pointers. So, if it‟s a large binary tree, a

significant amount of memory will be required.

Foundation of Data Structure Page 82

 Slow Performances: Binary trees are responsible for extremely slow performances in the

worst-case scenarios. The worst-case scenario might even degenerate a binary tree. If that

happens, every node will end up with just one child instead of two. As a result, search

operations will degrade.

 Unbalanced Trees: In an unbalanced binary tree, one subtree appears to be considerably

larger than the other. This difference can easily render search operations inefficient. The

difference is even more prominent when the tree isn‟t properly balanced, or data is

inserted within it in a non-random manner.

 Complex Balancing Algorithms: Several balancing algorithms can be used to keep a

binary tree balanced. But these algorithms are extremely difficult to implement. Some of

these algorithms also demand extra overhead, which makes them incapable of certain

applications.

Operations to Perform on a Binary Tree

Some basic operations that can be implemented on a binary tree include:

 Insertion of an element

 Removal of an element

 Looking for an element

 Deletion of an element

 Traversing an element (You can perform four types of traversals in a binary tree

structure.)

A binary tree is also suitable for performing a host of auxiliary operations. Some auxiliary

operations to implement on a binary tree include:

 Detecting the height of the tree

 Figuring out the level of the tree

 Determining the right size of the whole tree

Foundation of Data Structure Page 83

Tree Traversal Techniques – Data Structure and Algorithm Tutorials

Tree Traversal techniques include various ways to visit all the nodes of the tree. Unlike linear

data structures (Array, Linked List, Queues, Stacks, etc) which have only one logical way to

traverse them, trees can be traversed in different ways.

Tree Traversal Meaning:

Tree Traversal refers to the process of visiting or accessing each node of the tree exactly once

in a certain order. Tree traversal algorithms help us to visit and process all the nodes of the tree.

Since tree is not a linear data structure, there are multiple nodes which we can visit after visiting

a certain node. There are multiple tree traversal techniques which decide the order in which the

nodes of the tree are to be visited.

 Types of Tree Traversal in Data Structure

You can perform tree traversal in the data structure in numerous ways, unlike arrays, linked lists,

and other linear data structures, which are canonically traversed in linear order. You can walk

through them in either a depth-first search or a breadth-first search. In-order, pre-order, and post-

order are the three most frequent ways to go over them in depth-first.

Beyond these fundamental traversals, more complex or hybrid techniques, such as depth-limited

searches, such as iterative deepening depth-first search, are feasible.

Depth First Search

The depth-first search (DFS) is a method of traversing or searching data structures composed of

trees or graphs.

To get to the recursion, go down one level. If the tree isn't empty, perform the three procedures

below in a specific order:

Left: Recursively traversed left subtree

Right: Recursively traversed right subtree

Node: Traverse the root node

https://www.simplilearn.com/tutorials/data-structure-tutorial/dfs-algorithm

Foundation of Data Structure Page 84

Three orders execute tree traversal under this depth-first search algorithm.

Pre-Order Traversal (Root-Left-Right)

1. Traverse root node

2. Traverse left subtree

3. Traverse right subtree

Uses of pre-order traversal

To duplicate the tree, you need to use pre-order traversal. Pre-order traversal is used to obtain a

prefix expression from an expression tree.

In-Order Traversal (Left-Root-Right)

1. Traverse left subtree

2. Traverse root node

3. Traverse right subtree

Foundation of Data Structure Page 85

Uses of in-order traversal

Inorder traversal gives nodes in non-decreasing order in binary search trees or BST. A version of

Inorder traversal with Inorder traversal reverse can access BST nodes in non-increasing order.

Post-Order Traversal (Left-Right-Root)

1. Traverse left subtree

2. Tereveser right subtree

3. Traverse root node

Foundation of Data Structure Page 86

Uses of in-order traversal

You can delete the tree using post-order traversal. The postfix expression of tree data structure

can also be obtained using post-order traversal.

Depth First Search or Level Order Traversal

BFS (Breadth-First Search) is a vertex-based method for determining the shortest path in a

graph. It employs a queue data structure, where first in, it follows first out. In BFS, it visits one

vertex and marks it at the time, after which it sees and queues its neighbors.

After understanding the types of tree traversal in data structures, you will now examine how to

implement tree traversal in data structures.

Foundation of Data Structure Page 87

Implementations of Tree Traversal in Data Structure

Pre-Order Traversal

preorder_traversal(node)

 if (node == null)

 return

 visit(node)

 preorder_traversal(node.left_subtree)

Foundation of Data Structure Page 88

 preorder_traversal(node.right_subtree)

In-Order Traversal

inorder_traversal(node)

 if (node == null)

 return

 inorder_traversal(node.left_subtree)

 visit(node)

 inorder_traversal(node.right_subtree)

In-Order Traversal

postorder_traversal(node)

 if (node == null)

 return

 postorder_traversal(node.left_subtree)

 postorder_traversal(node.right_subtree)

 visit(node)

Code of implementing all three tree traversal in data structure

#include <stdio.h>

#include<conio.h>

#include <stdlib.h>

enum Traversal {Preorder_Traversal, Inorder_Traversal, Postorder_Traversal};

Foundation of Data Structure Page 89

typedef enum Traversal trav;

typedef struct Node Node;

struct Node {

 int x;

 Node* left_node, *right_node;

};

Node* create_tree(int data) { //creating tree

 Node* root = (Node*) malloc (sizeof(Node));

 root->left_node= root->right_node = NULL;

 root->x = data;

 return root;

}

Node* create_node(int data) { //creating node

 Node* node = (Node*) malloc (sizeof(Node));

 node->x = data;

 node->left_node = node->right_node = NULL;

 return node;

}

void release_tree(Node* root) { //releasing tree

Foundation of Data Structure Page 90

 Node* t = root;

 if (!t)

 return;

 release_tree(t->left_node);

 release_tree(t->right_node);

 if (!t->left_node && !t->right_node) {

Foundation of Data Structure Page 91

Graph Data Structure

A graph is a non linear data structure that consists of a set of vertices and a set of edges that

connect them together. In a graph, vertices represent entities, while edges represent the

relationships between them. Graphs are used to represent complex relationships between entities

and are widely used in computer science.

Terminologies Related to Graphs

Here are some terminologies related to graphs.

 Vertex: A vertex is a data item that is stored in a graph data structure.

 Edge: An edge is a connection between two vertices in a graph.

 Degree: The degree of a vertex in a graph data structure is defined as the number of

edges connected to it.

 Weight: The weight of an edge is a numerical value that is assigned to the edge to

represent the cost or distance between the vertices.

 Path: A path is a sequence of edges that connects two vertices in a graph.

 Cycle: A cycle is a path in a graph that starts and ends at the same vertex.

Types of Graph

Graphs are of the following different types.

https://www.prepbytes.com/blog/graphs/graph-in-data-structure/

Foundation of Data Structure Page 92

 Undirected Graph: In an undirected graph, edges do not have a direction. That is, the

edge connecting vertex A to vertex B is the same as the edge connecting vertex B to

vertex A.

 Directed Graph: In the case of a directed graph, the edges have a direction that means,

the edge connecting vertex A to vertex B is different from the edge connecting vertex B

to vertex A.

 Weighted Graph: In a weighted graph, edges have weights that represent the cost or

distance between the vertices.

Foundation of Data Structure Page 93

Foundation of Data Structure Page 94

Linear Data structure Non-Linear Data structure

Basic

In this structure, the elements are

arranged sequentially or linearly and

attached to one another.

In this structure, the elements are

arranged hierarchically or non-linear

manner.

Types
Arrays, linked list, stack, queue are

the types of a linear data structure.

Trees and graphs are the types of a non-

linear data structure.

implementation
Due to the linear organization, they

are easy to implement.

Due to the non-linear organization, they

are difficult to implement.

Traversal

As linear data structure is a single

level, so it requires a single run to

traverse each data item.

The data items in a non-linear data

structure cannot be accessed in a single

run. It requires multiple runs to be

traversed.

Arrangement
Each data item is attached to the

previous and next items.

Each item is attached to many other

items.

Levels

This data structure does not contain

any hierarchy, and all the data

elements are organized in a single

level.

In this, the data elements are arranged in

multiple levels.

Memory

utilization

In this, the memory utilization is not

efficient.

In this, memory is utilized in a very

efficient manner.

Time

complexity

The time complexity of linear data

structure increases with the increase

in the input size.

The time complexity of non-linear data

structure often remains same with the

increase in the input size.

Applications
Linear data structures are mainly

used for developing the software.

Non-linear data structures are used in

image processing and Artificial

Intelligence.

Foundation of Data Structure Page 95

Recommended Textbooks:

1. "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, and Clifford Stein

2. "Data Structures and Algorithm Analysis in C++" by Mark Allen Weiss

3. "Data Structures and Algorithms in Java" by Robert Lafore

4. "Algorithms, Part I and Part II" by Robert Sedgewick and Kevin Wayne

5. "Data Structures and Algorithms in Python" by Michael T. Goodrich, Roberto Tamassia,

and Michael H. Goldwasser

6. "Data Structures and Algorithms Made Easy" by Narasimha Karumanchi

7. "Data Structures and Algorithms Using Python and C++" by David M. Reed and John

Zelle

8. "Data Structures and Problem Solving Using Java" by Mark Allen Weiss

9. "The Algorithm Design Manual" by Steven S. Skiena

10. "Data Structures and Algorithms in C++" by Michael T. Goodrich, Roberto Tamassia,

and David M. Mount

