On Numerical Integration of Equally

 Spaced Hybrid Method for Third-Order Initial Value Problems Using Orthogonal Trial FunctionBeing a paper presented at the $7^{\text {th }}$ International Science Conference, Faculty of Science, Federal University, OyeEkiti on $15^{\text {th }}$ May, 2024

By
FOLARANMI R.O (Ph.D) (rotimi.folaranmi@tau.edu.ng)

ABSTRACT

The study addresses the essential role of Differential Equations (DES) in modelling physical phenomena and acknowledges the challenge posed by the inability to solve many des analytically. To overcome this, efficient numerical and approximation methods are necessary. The focus is on constructing a family of orthogonal polynomials valid in the interval [-1, 1] with a specific weight function. The hybrid two-step equally spaced method (htepm), employs collocation and interpolation techniques. On investigation of the fundamental properties of the method, findings reveal that the proposed schemes are consistent, zero-stable, and consequently convergent. Upon implementation, the study establishes the numerical superiority of the HTEPM over existing methods through rigorous numerical evaluations and comparisons. This suggests that the proposed method offers improved performance in solving DES within the specified

1.0 INTRODUCTION

integration techniques play a pivotal role in solving differential equations, especially in scenarios where anaNumericallytical solutions are unattainable. This study focuses on the numerical integration of third-order initial value problems (IVPs) utilizing an equally spaced hybrid method (HTEPM), augmented with orthogonal trial functions via collocation and interpolation technique.

Our main goal is to derive a new class of polynomials that may be used to a wide range of situations. Several writers have proposed ways for handling initial value problems because they want to improve the accuracy and efficiency of numerical approaches ([24], [26],[30]). Our goal is to create a class of orthogonal polynomials in this work that will be used as trial functions to construct numerical methods for a class of initial value issues that look like this:

$$
\begin{align*}
y^{m}(x) & =f\left(x, y, y^{\prime}, \ldots y^{m-1}\right) \tag{1}\\
y^{r}\left(x_{0}\right) & =y_{r}, r=0,1, \ldots, k-1
\end{align*}
$$

Specifically, we considered the case $m=3$,

The analytical solution of many of such problems does not exist. Thus, the need for formulation of numerical scheme to integrate (1) becomes neccesary.

Recently, there has been a focus on exploring the numerical solution of Ordinary Differential Equations (ODEs) (1) for cases where m equals 1, 2, and 3 using collocation methods, as evidenced by studies referenced in [1], [3], [4], [5], and [18

More recently, [8], [9], [14], and [19] have developed various numerical methods and explored diverse trial functions, contributing to the ongoing advancement of the field

Authors in both references [14] and [21] embraced the self-starting approach, employing Chebyshev Polynomials to formulate a series of algorithms. The numerical solutions derived through their methodologies are noteworthy, as they frequently converge to exact solutions at numerous instances. In what follows, we shall construct a set of orthogonal polynomials valid in interval $[0,1]$ with respect to weight function $w(x)=1+\frac{x}{2}$ which are serve as trial functions to derive a block method that provides direct solution to (1).

2.0 CONSTRUCTION OF ORTHOGONAL BASIS FUNCTIONS

Let the function $q_{n}(x)$ defined as

$$
\begin{equation*}
q_{n}(x)=\sum_{r=0}^{n} C_{r}^{(n)} x^{r} \tag{2}
\end{equation*}
$$

where $C_{r}{ }^{(n)}$'s are the orthogonal coefficients and $q_{n}(x)$ satisfies the inner product

$$
\begin{equation*}
<q_{m}(x), q_{n}(x)>=\int_{a}^{b} w(x) q_{m}(x) q_{n}(x) d x=0, \quad m \neq n,[-1,1] \tag{3}
\end{equation*}
$$

For the purpose of constructing the basis function, we use additional property that

$$
\begin{equation*}
q_{n}(1)=1 \tag{4}
\end{equation*}
$$

For $n=0$ in (2),

$$
q_{0}(x)=C_{0}^{(0)}
$$

From (4),

$$
q_{0}(1)=C_{0}^{(0)}=1
$$

Hence,

$$
q_{0}(x)=1
$$

For $n=1$ in (2),

$$
\begin{equation*}
q_{1}(x)=C_{0}^{(1)}+C_{1}^{(1)} x \tag{5}
\end{equation*}
$$

By definition (4), (5) gives

$$
\begin{equation*}
C_{0}^{(1)}+C_{1}^{(1)}=1 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
<q_{0}, q_{1}>=\int_{0}^{1}\left(1+\frac{x}{2}\right) q_{0}(x) q_{1}(x) d x \tag{7}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{5}{4} C_{0}^{(1)}+\frac{2}{3} C_{1}^{(1)}=0 \tag{8}
\end{equation*}
$$

Solving (6) and (10) and substituting the outcomes into (5), we have

$$
\begin{equation*}
q_{1}(x)=\frac{1}{7}(15 x-8) \tag{9}
\end{equation*}
$$

When $n=2$ in (2),

$$
\begin{equation*}
q_{2}(x)=C_{0}^{(2)}+C_{1}^{(2)} x+C_{2}^{(2)} x^{2} \tag{10}
\end{equation*}
$$

By definition (4), (10) gives

$$
\begin{equation*}
C_{0}^{(2)}+C_{1}^{(2)}+C_{2}^{(2)}=1 \tag{11}
\end{equation*}
$$

and

$$
<q_{0}, q_{2}>=\int_{0}^{1}\left(1+\frac{x}{2}\right) q_{0}(x) q_{2}(x) d x=0
$$

which implies

$$
\begin{equation*}
\frac{5}{4} C_{0}^{(2)}+\frac{2}{3} C_{1}^{(2)}+\frac{11}{24} C_{2}^{(2)}=0 \tag{13}
\end{equation*}
$$

Also

$$
\begin{equation*}
<q_{1}, q_{2}>=\int_{0}^{1}\left(1+\frac{x}{2}\right) q_{1}(x) q_{2}(x) d x \tag{14}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{37}{168} C_{1}^{(2)}+\frac{19}{84} C_{2}^{(2)}=0 \tag{15}
\end{equation*}
$$

Solving (11), (13), (15) and substituting the resulting values into (10), we have

$$
\begin{equation*}
q_{2}(x)=\frac{1}{57}\left(370 x^{2}-380 x+67\right) \tag{16}
\end{equation*}
$$

When $n=3$ in (2),

$$
\begin{equation*}
q_{3}(x)=C_{0}^{(3)}+C_{1}^{(3)} x+C_{2}^{(3)} x^{2}+C_{3}^{(3)} x^{3} \tag{17}
\end{equation*}
$$

By definition (4), (17) gives

$$
\begin{gathered}
C_{0}^{(3)}+C_{1}^{(3)}+C_{2}^{(3)}+C_{3}^{(3)}=1 \\
<q_{0}, q_{3}>=\int_{0}^{1}\left(1+\frac{x}{2}\right) q_{0}(x) q_{3}(x) d x=0
\end{gathered}
$$

which implies

$$
\begin{aligned}
& \frac{5}{4} C_{0}^{(3)}+\frac{2}{3} C_{1}^{(3)}+\frac{11}{24} C_{2}^{(3)}+\frac{7}{20} C_{3}^{(3)}=0 \\
& <q_{1}, q_{3}>=\int_{0}^{1}\left(1+\frac{x}{2}\right) q_{1}(x) q_{3}(x) d x=0
\end{aligned}
$$

This leads to

$$
\begin{gather*}
\frac{37}{168} C_{1}^{(3)}+\frac{19}{84} C_{2}^{(3)}+\frac{29}{140} C_{3}^{(3)}=0 \tag{22}\\
<q_{2}, q_{3}>=\int_{0}^{1}\left(1+\frac{x}{2}\right) q_{2}(x) q_{3}(x) d x=0 \tag{23}
\end{gather*}
$$

Solving (18),(20) and (22) and substituting the resulting values into (17), we obtain

$$
q_{3}(x)=\frac{1}{491}\left(10675 x^{3}-16290 x^{2}+6690 x-584\right)
$$

In the same vein, $q_{n}(x), n \geq 4$ are developed. The next three polynomials which are used in this work are listed hereunder.

$$
\begin{gathered}
q_{4}(x)=\frac{1}{4361}\left(332766 x^{4}-674072 x^{3}+440874 x^{2}-100428 x+5221\right) \\
q_{5}(x)=\frac{1}{7899}\left(2173710 x^{5}-5489736 x^{4}+4942812 x^{3}-1884904 x^{2}+275513 x-9496\right) \\
q_{6}(x)=\frac{1}{72509}\left(73254324 x^{6}-221626152 x^{5}+254436138 x^{4}-137426374 x^{3}+34913052 x^{2}\right. \\
-3565896 x+87419)
\end{gathered}
$$

2.1 Formulation of the Numerical Integration

We shall seek an approximation of the form

$$
\begin{equation*}
y(x)=\sum_{r=0}^{S+k-1} a_{r} q_{r}(x) \tag{25}
\end{equation*}
$$

where $q_{r}(x)$ is the orthogonal polynomials derived.
Our objective is to derive a two-step continuous hybrid linear multistep method in the sub-interval $\left[x_{n}, x_{n+p}\right]$ of $[\mathrm{a}, \mathrm{b}]$ where $x=\frac{2 x-2 x_{n}-p h}{p h}$ and p varies as the method to be derived. For this case

$$
p=2 \text {. }
$$

The procedure involves interpolating (25) at $x=x_{k+i}, i=0, \frac{1}{2}, 1$ and collocating the third derivative of (25) at $x=x_{k+i}, i=0, \frac{1}{2}, 1, \frac{3}{2}$ and 2 .
The $a_{r}(0 \leq r \leq 7)$, from the resulting system of equations are obtained and substituted into (25) to have the continuous equation

Evaluating equation (26) at $x=x_{k+\frac{3}{2}}$ and $x=x_{k+2}$ yield the following main methods as

$$
\begin{align*}
& y_{k+\frac{3}{2}}=y_{k}-3 y_{k+\frac{1}{2}}+3 y_{k+1}+\frac{h^{3}}{1920}\left(f_{k}+116 f_{k+\frac{1}{2}}+126 f_{k+1}-4 f_{k+\frac{3}{2}}+f_{k+2}\right) \tag{27}\\
& y_{k+2}=3 y_{k}-8 y_{k+\frac{1}{2}}+6 y_{k+1}+\frac{h^{3}}{480}\left(f_{k}+86 f_{k+\frac{1}{2}}+126 f_{k+1}+26 f_{k+\frac{3}{2}}+f_{k+2}\right) \tag{28}
\end{align*}
$$

The general block formular proposed in[10] in the normalized form given as $A^{(0)} Y_{m}=e y_{m}+h^{\mu-\tau} d f\left(y_{m}\right)+h^{\mu-\tau} b F\left(y_{m}\right)$
(29) shall be adopted inorder to develop the block method from the continuous scheme.

Evaluating the first and second derivatives of (26) at $x=x_{k+i}, i=0, \frac{1}{2}, 1, \frac{3}{2}$ and 2 and substituting the resulting equations and the main methods (27), (28) into (29) and solving simultaneously gives a block formula represented as

$$
\begin{aligned}
& \begin{array}{l}
y_{k+\frac{1}{2}}=y_{k}+\frac{1}{2} h y_{k}^{\prime}+\frac{1}{8} h^{2} y_{k}^{\prime \prime}+\frac{113}{8960} h^{3} f_{k}-\frac{103}{13440} h^{3} f_{k+1}-\frac{47}{80640} h^{3} f_{k+2}+\frac{107}{8064} h^{3} f_{k+\frac{1}{2}}+ \\
\quad \frac{43}{13440} h^{3} f_{k+\frac{3}{2}} \\
y_{k+1}=y_{k}+h y_{k}^{\prime}+\frac{1}{2} h^{2} y_{k}^{\prime \prime}+\frac{331}{5040} h^{3} f_{k}-\frac{1}{21} h^{3} f_{k+1}-\frac{19}{5040} h^{3} f_{k+2}+\frac{83}{630} h^{3} f_{k+\frac{1}{2}}+ \\
\\
\frac{13}{630} h^{3} f_{k+\frac{3}{2}} \\
y_{k+\frac{3}{2}} \\
=y_{k}+\frac{3}{2} h y_{k}^{\prime}+\frac{9}{8} h^{2} y_{k}^{\prime \prime}+\frac{1431}{8960} h^{3} f_{k}-\frac{243}{4480} h^{3} f_{k+1}-\frac{81}{8960} h^{3} f_{k+2}+\frac{1863}{4480} h^{3} f_{k+\frac{1}{2}}+ \\
\quad \frac{45}{896} h^{3} f_{k+\frac{3}{2}} \\
y_{k+2}=y_{k}+2 h y_{k}^{\prime}+2 h^{2} y_{k}^{\prime \prime}+\frac{31}{105} h^{3} f_{k}+\frac{4}{105} h^{3} f_{k+1}-\frac{1}{63} h^{3} f_{k+2}+\frac{272}{315} h^{3} f_{k+\frac{1}{2}}+ \\
\frac{16}{105} h^{3} f_{k+\frac{3}{2}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& y_{k+\frac{1}{2}}^{\prime}=h y_{k}^{\prime}+h^{2} y_{k}^{\prime \prime}+\frac{53}{360} h^{3} f_{k}-\frac{1}{12} h^{3} f_{k+1}-\frac{1}{120} h^{3} f_{k+2}+\frac{2}{5} h^{3} f_{k+\frac{1}{2}}+\frac{2}{45} h^{3} f_{k+\frac{3}{2}} \\
& y_{k+1}^{\prime}=h y_{k}^{\prime}+\frac{3}{2} h^{2} y_{k}^{\prime \prime}+\frac{147}{640} h^{3} f_{k}+\frac{27}{320} h^{3} f_{k+1}-\frac{9}{640} h^{3} f_{k+2}+\frac{117}{160} h^{3} f_{k+\frac{1}{2}}+ \\
& \frac{3}{32} h^{3} f_{k+\frac{3}{2}} \\
& y_{k+\frac{3}{2}}^{\prime} \\
& \quad=h y_{k}^{\prime}+\frac{1}{2} h^{2} y_{k}^{\prime \prime}+\frac{367}{5760} h^{3} f_{k}-\frac{47}{960} h^{3} f_{k+1}-\frac{7}{1960} h^{3} f_{k+2}+\frac{3}{32} h^{3} f_{k+\frac{1}{2}} \\
& \quad+\frac{29}{1440} h^{3} f_{k+\frac{3}{2}} \\
& y_{k+2}^{\prime}
\end{aligned}
$$

$$
\begin{gather*}
y_{k+\frac{1}{2}}^{\prime \prime}=h^{2} y_{k}^{\prime \prime}+\frac{29}{180} h^{3} f_{k}+\frac{2}{15} h^{3} f_{k+1}-\frac{1}{180} h^{3} f_{k+2}+\frac{31}{45} h^{3} f_{k+\frac{1}{2}}+\frac{1}{45} h^{3} f_{k+\frac{3}{2}} \\
y_{k+1}^{\prime \prime}=h^{2} y_{k}^{\prime \prime}+\frac{27}{160} h^{3} f_{k}+\frac{9}{20} h^{3} f_{k+1}-\frac{3}{160} h^{3} f_{k+2}+\frac{51}{80} h^{3} f_{k+\frac{1}{2}}+\frac{21}{80} h^{3} f_{k+\frac{3}{2}} \\
y_{k+\frac{3}{2}}^{\prime \prime}=h^{2} y_{k}^{\prime \prime}+\frac{251}{1440} h^{3} f_{k}-\frac{11}{60} h^{3} f_{k+1}-\frac{19}{1440} h^{3} f_{k+2}+\frac{323}{720} h^{3} f_{k+\frac{1}{2}}+ \\
\frac{53}{720} h^{3} f_{k+\frac{3}{2}} \\
y_{k+2}^{\prime \prime}=h^{2} y_{k}^{\prime \prime}+\frac{7}{45} h^{3} f_{k}+\frac{4}{15} h^{3} f_{k+1}+\frac{7}{45} h^{3} f_{k+2}+\frac{32}{45} h^{3} f_{k+\frac{1}{2}}+\frac{32}{45} h^{3} f_{k+\frac{3}{2}} \tag{30}
\end{gather*}
$$

4.0 Numerical Applications

We consider here the application of the derived schemes to three test problems for the efficiency and accuracy of the method implemented as block method

Problem 4.1.1: (A non-linear problem)

$$
y^{2} y^{\prime \prime \prime}=1, \quad y(0)=1 \quad y^{\prime}(0)=1, \quad y^{\prime \prime}(0)=1, \quad h=0.1
$$

Source: [11]
The above problem was derived by Tanner to investigate the motion of the contact line for a thin oil drop spreading on a horizontal surface.

Problem 4.1.2 Non-linear Blasius Equation (Application Problem)

$$
2 y^{\prime \prime \prime}+y y^{\prime \prime}=0
$$

$$
y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(0)=1
$$

The exact solution does not exist.
Source: [2]

Problem 4.1.3 Non-linear Genesio Equation (Application Problem)

Here we consider the nonlinear chaotic system from Genesio and Tesi (1992)

$$
x^{\prime \prime \prime}+A x^{\prime \prime}+B x^{\prime}-f(x(t))=0
$$

with

$$
f(x(t))=-C x(t)+x^{2}(t)
$$

that is subject to the following initial conditions:

$$
x(0)=0.2, \quad x^{\prime}(0)=-0.3, \quad x^{\prime \prime}(0)=0.1, \quad t \in[0, b],
$$

where $A=1.2, \quad B=2.29$ and $C=6$ are positive constants that satisfied $A B<C$ for the existence of the solution.
Source: [15]

TABLE 4.1.1: COMPARING THE SOLUTION OF THE APPROXIMATE AND THE EXISTING METHOD FOR PROBLEM 4.1.1

| P | Sxact Solution | Result of New Miethod | Sror in New Method
 Order $P=5$ | Sror in Tanner (1979)
 Order $P=4$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.2 | 1.22121001337746352620 | 1.22121000401169152860 | $9.36577199 \times 10^{-09}$ | $2.40500000 \times 10^{-05}$ |
| 0.4 | 1.48883473296637175650 | 1.48883477650976717200 | $4.35433954 \times 10^{-08}$ | $7.71670000 \times 10^{-05}$ |
| 0.6 | 1.80736134919720764840 | 1.80736138815762258600 | $3.89604149 \times 10^{-08}$ | $7.94945000 \times 10^{-06}$ |
| 0.8 | 2.17981922624938085950 | 2.17981921459690672930 | $1.16524741 \times 10^{-08}$ | $4.34949000 \times 10^{-03}$ |
| 1.0 | 2.60827491835217941000 | 2.60827483474311471480 | $8.36090470 \times 10^{-08}$ | $1.83199620 \times 10^{-02}$ |

TABLE 4.1.2: COMPARING THE SOLUTION OF THE APPROXIMATE AND THE EXISTING METHOD FOR PROBLEM 4.1.2

X	Exact Solution	Result of New Method	Sror in New Method Order $P=5$	Pror in Adesanya $[21$
0.1	0.00499995518745601000	0.00499995833058056099	$3.14312455 \times 10^{-09}$	$4.27300000 \times 10^{-08}$
0.2	0.01999865908023810000	0.01999866682345690130	$7.74321880 \times 10^{-09}$	$1.20759000 \times 10^{-06}$
0.3	0.04498987410259470000	0.04498987942740723500	$5.32481254 \times 10^{-09}$	$8.60719000 \times 10^{-06}$
0.4	0.07995737735167610000	0.07995737788388623047	$5.32210130 \times 10^{-10}$	$3.40900400 \times 10^{-05}$
0.5	0.12487004764653700000	0.12487005733490623182	$9.68836923 \times 10^{-09}$	$9.74068000 \times 10^{-05}$
0.6	0.17967712636121700000	0.17967714100994159450	$1.46487246 \times 10^{-08}$	$2.25711000 \times 10^{-04}$
0.7	0.24430361290038500000	0.24430361658620586118	$3.68582086 \times 10^{-09}$	$4.51454700 \times 10^{-04}$
0.8	0.31864597946467400000	0.31864600868048815589	$2.92158142 \times 10^{-08}$	$8.08472900 \times 10^{-04}$
0.9	0.40256860621313400000	0.40256861961077550241	$1.33976415 \times 10^{-08}$	$1.32622070 \times 10^{-03}$
1.0	0.49590033762933700000	0.49590038143998373466	$4.38106467 \times 10^{-08}$	$2.02205460 \times 10^{-03}$

SOLUTION OF HTEPM FOR PROBLEM 4.1.3

\mathbf{X}	Exact Solution	Result of New Method	Error in New Method Order $P=5$
0.1	0.170440346269364	0.17044034739217347603	$1.12280948 \times 10^{-09}$
0.2	0.141582173138664	0.14158217447659620875	$1.33793221 \times 10^{-09}$
0.3	0.113282963581607	0.11328296817008674018	$4.58847974 \times 10^{-09}$
0.4	0.0855545249227360	0.08555454145299195369	$1.65302560 \times 10^{-08}$
0.5	0.0585436828645928	0.05854370999334741200	$2.71287546 \times 10^{-08}$
0.6	0.0325108774782471	0.03251091543736197638	$3.79591149 \times 10^{-08}$
0.7	0.00780685408274400	0.00780690667931403256	$5.25965700 \times 10^{-08}$
0.8	-0.151523368042584	-0.1515226448987367326	$7.23143847 \times 10^{-08}$
0.9	-0.359116451185857	-0.3591154842620219391	$9.66923835 \times 10^{-08}$
1.0	-0.540041077972614	-0.5400398437640223413	$1.23420860 \times 10^{-07}$

5.0DISCUSSION OF RESULTS

Problems 4.1.1 is a non-linear problem derived by Tanner to investigate the motion of the contact line for a thin oil drop spreading on a horizontal surface. Problem 4.1.2 considered Blassius equation in thermodynamics. The nonlinear Genesio equation of problem 4.1.3 is a non-linear chaotic system from [15]. The results were displayed in Tables 4.1.1, 4.1.2 and 4.1.3 respectively. The absolute errors obtained from tables 4.1.1 and 4.1.2 revealed that on comparison with the exact solution, the low errors resulted demonstrate their effectiveness and accuracy as the schemes performed favorably well. The exact solution, however, for problems 4.1.1, 4.1.2, and 4.1.3 were not available. Hence, they were generated directly using Maple software environment

6.0 CONCLUSION

The construction of a new class of continuous implicit two-step hybrid scheme capable of solving Initial Value problems of third order ODEs has been the central concern in this work. The Orthogonal Polynomials valid in the interval $[-1,1]$ with respect to weight function $w(x)=1+\frac{x}{2}$ have been chosen as basis functions to develop the schemes using interpolation and collocation techniques with the incorporation of equally spaced off-step points in order to approximate the solutions of IVPs. The scheme is capable of handling non-linear application problems. Tables 1, 2 and 3 displays the accuracy of the numerical results of the HTEPM with the exact solution and existing methods. The desirability and superiority of the method have been established by the numerical results.

REFERENCES

[1] A.O. Adesanya, M.O. Udo, A.M. Alkali, 'A New Block Predictor-Corrector Algorithm for the Solution of $y^{\prime \prime \prime}=$ $f\left(x, y, y^{\prime}, y^{\prime \prime}\right)$ '. American Journal of Computational Mathematics,2012, 2:341-344
[2] A.O., Adesanya, G.J.,Oghonyon, and M.C., 'Agarana, Block algorithm for general third order ordinary differential equations', ICASTOR Journal of Mathematical Sciences, 2013,7 (2):127-136.
[3] E.O. Adeyefa, F.L. Joseph, O.D. Ogwumu, 'Three-Step Implicit Block Method for Second Order ODEs'. International Journal of Engineering Science Invention, 2014, 3(2), 34-38
[4] E.O. Adeyefa: ‘A Model for Solving First, Second and Third Order IVPs Directly’. Int. J. Appl. Comput. Math. 2021, 7(131), https://doi.org/10.1007/s40819-021-01075-6
[5] E.O. Adeyefa and J.O. Kuboye, 'derivation of new numerical model capable of solving second and third order ordinary differential equations directly'. IAENG International journal of applied mathematics, 2020, 50(2), 233241
[6] E.O. Adeyefa, Y. Haruna, R.O. Ajewole and R.I. Ndu, 'On Polynomials Construction', International Journal of Mathematical Analysis, 2018, 12(6), 251-257
[7] E.O. Adeyefa, A.O. Akintunde, and R.I. Ndu, J.A. Oladunjoye and A.A. Ibrahim, 'Block Nystrom type method and its block extension for fourth order initial and boundary value problems', International Journal of Mathematical Analysis, 2018, 12(4), 183-198. https://doi.org/10.12988/ijma.2018.711148
[8] E.O. Adeyefa, 'Orthogonal-based hybrid block method for solving general second order initial value problems', Italian journal of pure and applied mathematics, 2017, 37,659-672,
http://ijpam.uniud.it/journal/onl 2017-37.htm
[9] T. Aliya, A.A. Shaikh, and S. Qureshi, 'Development of a nonlinear hybrid numerical method.' Advances in Differential Equations and Control Processes, 2018, vol.19, no.3,
pp.275-285.
[10] D.O.,Awoyemi, S. J. Kayode, and L.O.Adoghe,'A sixth-order implicit method for the numerical integration of initial value problems of third order ordinary differential equations'.Journal of the Nigerian Association of Mathematical Physics, 2014, 28(1):95-102.
[11] D.O.,Awoyemi, S. J. Kayode and L.O. Adoghe, 'A four-point fully implicit method for the numerical integration of third-order ordinary differential equations'.

International Journal of Physics Sciences, 2014, 9(1):7-12.
[12] G., Dahlquist, 'Some properties of linear multistep and one leg method for ordinary differential equations'. Department of Computer Science, Royal Institute of Technology, Stockholm, 1979.
[13] R.O. Folaranmi, Adeniyi, R.B. and Adeyefa, E.O., "An Orthogonal Based Self-Starting Numerical Integrator for Third Order IVPs in ODEs" Pacific Journal of Science and Technology, 2016,17(2):73-86. http://www.akamaiuniversity.us/PJST17 2 73.pdf.
[14] R.O., Folaranmi, A. A, Ayoade and T, Latunde, "A Fifth-Order Hybrid Block Integrator for Third-Order Initial Value Problems".Cankaya University Journal of Science and Engineering, e-ISSN: 2564-7954. https://dergipark.org.tr/cankujse, 2021,18(2), 087-100.
[15] R. Genesio and A.Tesi, 'Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems', Automatica,1992, 28(3) 531-548.
[16] A. Jajarmi, B. Ghanbari, and D. Baleanu, "A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence", Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, vol. 29, no. 9, pp. 54-67.
[17] S.N. Jator, 'A sixth order linear multistep method for direct solution of
$y^{\prime \prime}=f\left(x, y, y^{\prime}\right)^{\prime}$. International Journal of Pure and Applied Mathematics,2007, 40(4): 457- 472.
[18] S.N. Jator and E.O. Adeyefa, 'Direct Integration of fourth Order Initial and Boundary Value Problems using Nystrom Type Methods', IAENG International journal of applied mathematics, 2019, 49(4), 638-649.
[19] F.L. Joseph, R.B. Adeniyi and E.O. Adeyefa, 'A Collocation Techniques for Hybrid Block Methods with a Constructed Orthogonal basis for Second Order Ordinary Differential Equations’, Global Journal of Pure and Applied Mathematics. 2018,14(4), 7-27
[20] J.D. Lambert, "Computational methods in Ordinary differential system", John Wiley, New York. 1973.
[21] C. Lanczos, 'Trigonometric interpolation of empirical and analytical functions'. J. Math. Physics, 1938,17, 123-199.
[22] W.E. Milne, 'Numerical solution of differential equations'. John Wiley and Sons,1953.
[23] Z.A. Majid, Azmi, M. Suleiman, and Z.B. Ibrahim , 'Solving directly general third order ordinary differential equations using twopoint four step block method," Sains Malaysiana, vol. 41, no. 5, pp. 623-632, 2012.
[24] Ramos H, Mehta S \& Vigo-Aguiar J., 'A unified approach for the development of kstep block Falknertype methods for solving general second-order initial value problems in ODEs'. J. Computational \& Appl. Maths., (in press). 2016.
[25] J.B. Rosser, Runge-Kutta for all seasons. SIAM, 1967, (9); 417-452.
[26] T.E. Simos, 'Dissipative trigonometrically-fitted methods for second order IVPs with oscillating solutions'. Int. J. Mod. Phys, 2002,13(10), 1333-1345.
[27] L.F. Sham pine, and H.A Watts, "Block implicit one-step methods". Journal of Computer Maths. 1969, vol.23, pp.731-740.
[28] G. Szego, Orthogonal polynomials, Amer. Math. Soc. Colloquium Publications, 1975
[29] L.H. Tanner," The spreading of silicone oil drops on horizontal surfaces", J. Phys. Appl. Phys., 1979, vol.12, pp. 1473-1484.
[30] J. Vigo-Aguilar, and H. Ramos,"Variable step size implementation of multistep methods". Journal of Computational \& Applied Mathematics, 2006,vol.192, pp. 114-131.
[31] Y.A. Yahaya, A.M. Badmus, A Class of Collocation Methods for general second order ordinary differential equations. African journal of mathematics and computer science. 2009,2(4), 069-072.

