
On Numerical Integration of Equally 

Spaced Hybrid Method for Third-Order 

Initial Value Problems Using Orthogonal 

Trial Function      
 Being a paper presented at the 7th International Science 

Conference, Faculty of Science, Federal University, Oye-

Ekiti on 15th May, 2024

By 
FOLARANMI R.O (Ph.D)   (rotimi.folaranmi@tau.edu.ng) 

mailto:rotimi.folaranmi@tau.edu.ng


ABSTRACT
The study addresses the essential role of Differential Equations (DES) in 

modelling physical phenomena and acknowledges the challenge posed by 

the inability to solve many des analytically. To overcome this, efficient 

numerical and approximation methods are necessary. The focus is on 

constructing a family of orthogonal polynomials valid in the interval [-1, 

1] with a specific weight function. The hybrid two-step equally spaced 

method (htepm), employs collocation and interpolation techniques. On 

investigation of the fundamental properties of the method, findings 

reveal that the proposed schemes are consistent, zero-stable, and 

consequently convergent. Upon implementation, the study establishes 

the numerical superiority of the HTEPM over existing methods through 

rigorous numerical evaluations and comparisons. This suggests that the 

proposed method offers improved performance in solving DES within the 

specified context.
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1.0  INTRODUCTION

integration techniques play a pivotal role in solving differential equations, especially in scenarios where 

anaNumericallytical solutions are unattainable. This study focuses on the numerical integration of third-order 

initial value problems (IVPs) utilizing an equally spaced hybrid method (HTEPM), augmented with orthogonal 

trial functions via collocation and interpolation technique.  

Our main goal is to derive a new class of polynomials that may be used to a wide range of situations. Several 

writers have proposed ways for handling initial value problems because they want to improve the accuracy and 

efficiency of numerical approaches ([24] ,[26],[30]). Our goal is to create a class of orthogonal polynomials in 

this work that will be used as trial functions to construct numerical methods for a class of initial value issues that 

look like this: 

    𝑦𝑚 𝑥 = 𝑓(𝑥, 𝑦, 𝑦′, … 𝑦𝑚−1)  (1)

   𝑦𝑟 𝑥0 = 𝑦𝑟  , 𝑟 = 0, 1, … , 𝑘 − 1

Specifically, we considered the case 𝑚 = 3,

The analytical solution of many of such problems does not exist. Thus, the need for formulation of numerical 

scheme to integrate (1) becomes neccesary.



Recently, there has been a focus on exploring the numerical solution of Ordinary 

Differential Equations (ODEs) (1) for cases where 𝑚 equals 1, 2, and 3 using 

collocation methods, as evidenced by studies referenced in [1], [3], [4], [5], and [18]]]].

More recently, [8], [9], [14], and [19] have developed various numerical 

methods and explored diverse trial functions, contributing to the ongoing 

advancement of the field

Authors in both references [14] and [21] embraced the self-starting 

approach, employing Chebyshev Polynomials to formulate a series of 

algorithms. The numerical solutions derived through their methodologies are 

noteworthy, as they frequently converge to exact solutions at numerous 

instances. In what follows, we shall construct a set of orthogonal polynomials valid in 

interval [0, 1] with respect to weight function 𝑤(𝑥) = 1 +
𝑥

2
 which are serve as trial 

functions to derive a block method that provides direct solution to (1).



2.0   CONSTRUCTION OF ORTHOGONAL BASIS FUNCTIONS

 Let the function 𝑞𝑛(𝑥) defined as 

 𝑞𝑛(𝑥)  =  σ𝑟=0
𝑛 𝐶𝑟

(𝑛)
𝑥𝑟 (2)

 where 𝐶𝑟
(𝑛)’s are the orthogonal coefficients and 𝑞𝑛(𝑥) satisfies the inner product 

< 𝑞𝑚 𝑥 , 𝑞𝑛 𝑥 > = 𝑎׬ 

𝑏
𝑤 𝑥 𝑞𝑚 𝑥 𝑞𝑛 𝑥 𝑑𝑥 = 0,  𝑚 ≠ 𝑛, [−1,1] (3)

 For the purpose of constructing the basis function, we use additional property that 

 𝑞𝑛(1)  =  1 (4)

 For 𝑛 = 0 in (2), 

 𝑞0(𝑥)  =  𝐶0
(0)

 

From (4), 

 𝑞0(1)  =  𝐶0
(0)

 =  1

Hence, 

 𝑞0(𝑥)  =  1

For 𝑛 = 1 in (2), 

 𝑞1(𝑥)  =  𝐶0
(1)

 +  𝐶1
(1)

𝑥 (5)



By definition (4), (5) gives 

 𝐶0
(1)

 +  𝐶1
(1)

 =  1 (6)

 and 

 < 𝑞0, 𝑞1 > = 0׬ 

1
1 +

𝑥

2
 𝑞0(𝑥)𝑞1(𝑥)𝑑𝑥 (7)

 which implies 

5

4
𝐶0

(1)
+

2

3
𝐶1

(1)
 =  0 (8)

 Solving (6) and (10) and substituting the outcomes into (5), we have 

 𝑞1(𝑥)  =  
1

7
(15𝑥 − 8) (9)

 When 𝑛 = 2 in (2), 

 𝑞2(𝑥)  =  𝐶0
(2)

 +  𝐶1
(2)

𝑥 +  𝐶2
(2)

𝑥2    (10)

 By definition (4), (10) gives 

 𝐶0
(2)

 +  𝐶1
(2)

 +  𝐶2
(2)

 =  1 (11)



and 

 < 𝑞0, 𝑞2 > = 0׬ 

1
1 +

𝑥

2
 𝑞0(𝑥)𝑞2(𝑥)𝑑𝑥 = 0 (12)

 which implies 

5

4
𝐶0

(2)
 +

2

3
𝐶1

(2)
 +

11

24
𝐶2

(2)
 =  0 (13)

 Also 

 < 𝑞1, 𝑞2 > = 0׬ 

1
1 +

𝑥

2
𝑞1(𝑥)𝑞2(𝑥)𝑑𝑥 (14)

 which gives 

37

168
𝐶1

(2)
 +  

19

84
𝐶2

(2)
 =  0 (15)

 Solving (11), (13), (15) and substituting the resulting values into (10), we have 

 𝑞2(𝑥) =
1

57
(370𝑥2 − 380𝑥 + 67) (16)

 When 𝑛 = 3 in (2), 

 𝑞3(𝑥)  =  𝐶0
(3)

 +  𝐶1
(3)

𝑥 +  𝐶2
(3)

𝑥2 +  𝐶3
(3)

𝑥3 (17)



By definition (4), (17) gives 

 𝐶0
(3)

 +  𝐶1
(3)

 +  𝐶2
(3)

 +  𝐶3
(3)

 =  1 (18)

 

 < 𝑞0, 𝑞3 > = 0׬ 

1
1 +

𝑥

2
𝑞0(𝑥)𝑞3(𝑥)𝑑𝑥 = 0 (19)

 which implies 

5

4
𝐶0

(3)
 +

2

3
𝐶1

(3)
 +

11

24
𝐶2

(3)
 +

7

20
𝐶3

(3)
 =  0 (20)

 

  < 𝑞1, 𝑞3 > = 0׬ 

1
1 +

𝑥

2
𝑞1(𝑥)𝑞3(𝑥)𝑑𝑥 = 0 (21)

 This leads to 

37

168
𝐶1

(3)
 +

19

84
𝐶2

(3)
 +

29

140
𝐶3

(3)
 =  0 (22)

 

 < 𝑞2, 𝑞3 > = 0׬ 

1
1 +

𝑥

2
𝑞2(𝑥)𝑞3(𝑥)𝑑𝑥 = 0 (23)



Solving (18),(20) and (22) and substituting the resulting values into (17), we obtain 

𝑞3(𝑥)  =
1

491
(10675𝑥3 − 16290𝑥2 + 6690𝑥 − 584) (24)

In the same vein, 𝑞𝑛(𝑥), 𝑛 ≥ 4 are developed. The next three polynomials which are used in this work are listed 

hereunder.

𝑞4(𝑥)  =
1

4361
(332766𝑥4  −  674072𝑥3  +  440874𝑥2  − 100428𝑥 + 5221)

𝑞5(𝑥)  =
1

7899
(2173710𝑥5  −  5489736𝑥4 + 4942812𝑥3  −  1884904𝑥2  +  275513𝑥 − 9496)

𝑞6(𝑥)  =
1

72509
(73254324𝑥6  −  221626152𝑥5  + 254436138𝑥4  −  137426374𝑥3 +  34913052𝑥2

 − 3565896𝑥 + 87419) 



2.1  Formulation of the Numerical Integration

We shall seek an approximation of the form

         𝑦 𝑥 = σ𝑟=0
𝑠+𝑘−1 𝑎𝑟𝑞𝑟(𝑥)            (25)

where 𝑞𝑟(𝑥) is the orthogonal polynomials derived.

Our objective is to derive a two-step continuous hybrid linear multistep method 

in the sub-interval [𝑥𝑛, 𝑥𝑛+𝑝] of [a, b] where 𝑥 =
2𝑋−2𝑥𝑛−𝑝ℎ

𝑝ℎ
 and 𝑝 varies as the 

method to be derived. For this case

 𝑝 = 2.

The procedure involves interpolating (25) at 𝑥 = 𝑥𝑘+𝑖, 𝑖 = 0,
1

2
, 1and collocating 

the third derivative of (25) at 𝑥 = 𝑥𝑘+𝑖, 𝑖 = 0,
1

2
, 1,

3

2
 𝑎𝑛𝑑 2.  

The 𝑎𝑟(0 ≤ 𝑟 ≤ 7), from the resulting system of equations are obtained and 

substituted into (25) to have the continuous equation 

൬

൰

σ



Evaluating equation (26) at 𝑥 = 𝑥
𝑘+

3

2

 and 𝑥 = 𝑥𝑘+2 yield the following main methods as 

𝑦
𝑘+

3

2

= 𝑦𝑘 − 3𝑦
𝑘+

1

2

+ 3𝑦𝑘+1 +
ℎ3

1920
𝑓𝑘 + 116𝑓

𝑘+
1

2

+ 126𝑓𝑘+1 − 4𝑓
𝑘+

3

2

+ 𝑓𝑘+2  (27)

 𝑦𝑘+2 = 3𝑦𝑘 − 8𝑦
𝑘+

1

2

+ 6𝑦𝑘+1 +
ℎ3

480
𝑓𝑘 + 86𝑓

𝑘+
1

2

+ 126𝑓𝑘+1 + 26𝑓
𝑘+

3

2

+ 𝑓𝑘+2                                                                                                                              

  (28)

The general block formular proposed in[10] in the normalized form given as 

𝐴(0)𝑌𝑚 = 𝑒𝑦𝑚 + ℎ𝜇−𝜏𝑑𝑓 𝑦𝑚 + ℎ𝜇−𝜏𝑏𝐹(𝑦𝑚)                                                                                     

(29)    shall be adopted inorder to develop the block method from the continuous scheme.

Evaluating the first and second derivatives of (26) at 𝑥 = 𝑥𝑘+𝑖, 𝑖 = 0,
1

2
, 1,

3

2
 𝑎𝑛𝑑 2 and 

substituting the resulting equations and the main methods (27), (28) into (29) and solving 

simultaneously gives a block formula represented as 



𝑦
𝑘+

1

2

= 𝑦𝑘 +
1

2
ℎ𝑦𝑘

′ +
1

8
ℎ2𝑦𝑘

′′ +
113

8960
ℎ3𝑓𝑘 −

103

13440
ℎ3𝑓𝑘+1 −

47

80640
ℎ3𝑓𝑘+2 +

107

8064
ℎ3𝑓

𝑘+
1

2

+

 
43

13440
ℎ3𝑓

𝑘+
3

2

 

𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑦𝑘
′ +

1

2
ℎ2𝑦𝑘

′′ +
331

5040
ℎ3𝑓𝑘 −

1

21
ℎ3𝑓𝑘+1 −

19

5040
ℎ3𝑓𝑘+2 +

83

630
ℎ3𝑓

𝑘+
1

2

+

 
13

630
ℎ3𝑓

𝑘+
3

2

 

𝑦
𝑘+

3
2

= 𝑦𝑘 +
3

2
ℎ𝑦𝑘

′ +
9

8
ℎ2𝑦𝑘

′′ +
1431

8960
ℎ3𝑓𝑘 −

243

4480
ℎ3𝑓𝑘+1 −

81

8960
ℎ3𝑓𝑘+2 +

1863

4480
ℎ3𝑓

𝑘+
1
2

+ 

 
45

896
ℎ3𝑓

𝑘+
3

2

 

 𝑦𝑘+2 = 𝑦𝑘 + 2ℎ𝑦𝑘
′ + 2ℎ2𝑦𝑘

′′ +
31

105
ℎ3𝑓𝑘 +

4

105
ℎ3𝑓𝑘+1 −

1

63
ℎ3𝑓𝑘+2 +

272

315
ℎ3𝑓

𝑘+
1

2

+

16

105
ℎ3𝑓

𝑘+
3

2

 



𝑦
𝑘+

1
2

′ = ℎ𝑦𝑘
′ + ℎ2𝑦𝑘

′′ +
53

360
ℎ3𝑓𝑘 −

1

12
ℎ3𝑓𝑘+1 −

1

120
ℎ3𝑓𝑘+2 +

2

5
ℎ3𝑓

𝑘+
1
2

+
2

45
ℎ3𝑓

𝑘+
3
2

𝑦𝑘+1
′ = ℎ𝑦𝑘

′ +
3

2
ℎ2𝑦𝑘

′′ +
147

640
ℎ3𝑓𝑘 +

27

320
ℎ3𝑓𝑘+1 −

9

640
ℎ3𝑓𝑘+2 +

117

160
ℎ3𝑓

𝑘+
1

2

+

 
3

32
ℎ3𝑓

𝑘+
3

2

 

𝑦
𝑘+

3
2

′

= ℎ𝑦𝑘
′ +

1

2
ℎ2𝑦𝑘

′′ +
367

5760
ℎ3𝑓𝑘 −

47

960
ℎ3𝑓𝑘+1 −

7

1960
ℎ3𝑓𝑘+2 +

3

32
ℎ3𝑓

𝑘+
1
2

+
29

1440
ℎ3𝑓

𝑘+
3
2

 𝑦𝑘+2
′ = ℎ𝑦𝑘

′ + 2ℎ2𝑦𝑘
′′ +

14

45
ℎ3𝑓𝑘 +

4

15
ℎ3𝑓𝑘+1 +

16

15
ℎ3𝑓

𝑘+
1

2

+
16

45
ℎ3𝑓

𝑘+
3

2

 



𝑦
𝑘+

1
2

′′ = ℎ2𝑦𝑘
′′ +

29

180
ℎ3𝑓𝑘 +

2

15
ℎ3𝑓𝑘+1 −

1

180
ℎ3𝑓𝑘+2 +

31

45
ℎ3𝑓

𝑘+
1
2

+
1

45
ℎ3𝑓

𝑘+
3
2

 𝑦𝑘+1
′′ = ℎ2𝑦𝑘

′′ +
27

160
ℎ3𝑓𝑘 +

9

20
ℎ3𝑓𝑘+1 −

3

160
ℎ3𝑓𝑘+2 +

51

80
ℎ3𝑓

𝑘+
1

2

+
21

80
ℎ3𝑓

𝑘+
3

2

 

 𝑦
𝑘+

3

2

′′ = ℎ2𝑦𝑘
′′ +

251

1440
ℎ3𝑓𝑘 −

11

60
ℎ3𝑓𝑘+1 −

19

1440
ℎ3𝑓𝑘+2 +

323

720
ℎ3𝑓

𝑘+
1

2

+ 

 
53

720
ℎ3𝑓

𝑘+
3

2

 

𝑦𝑘+2
′′ = ℎ2𝑦𝑘

′′ +
7

45
ℎ3𝑓𝑘 +

4

15
ℎ3𝑓𝑘+1 +

7

45
ℎ3𝑓𝑘+2 +

32

45
ℎ3𝑓

𝑘+
1

2

+
32

45
ℎ3𝑓

𝑘+
3

2

       

 (30) 



4.0  Numerical Applications

We consider here the application of the derived schemes to three test problems for the efficiency and accuracy 

of the method implemented as block method

Problem 4.1.1: (A non-linear problem) 

𝑦2𝑦′′′ = 1,  𝑦(0) = 1 𝑦′(0) = 1,  𝑦′′(0) = 1,  ℎ = 0.1

Source: [11] 

The above problem was derived by Tanner to investigate the motion of the contact line for a thin oil drop 

spreading on a horizontal surface.

Problem 4.1.2 Non-linear Blasius Equation (Application Problem) 

 2𝑦′′′ + 𝑦𝑦′′ = 0

𝑦 0 = 0,  𝑦′ 0 = 0,  𝑦′′ 0 = 1

             The exact solution does not exist.

Source: [2]



Problem 4.1.3 Non-linear Genesio Equation (Application Problem)

Here we consider the nonlinear chaotic system from Genesio and Tesi (1992) 

 𝑥′′′ + 𝐴𝑥′′ + 𝐵𝑥′ − 𝑓(𝑥(𝑡)) = 0

with 

 𝑓(𝑥(𝑡)) = −𝐶𝑥(𝑡) + 𝑥2(𝑡)

that is subject to the following initial conditions: 

𝑥(0) = 0.2,  𝑥′(0) = −0.3,  𝑥′′(0) = 0.1,  𝑡 ∈ [0, 𝑏],

where 𝐴 = 1.2,  𝐵 = 2.29 𝑎𝑛𝑑 𝐶 = 6 are positive constants that satisfied 𝐴𝐵 < 𝐶 

for the existence of the solution.

Source: [15]



TABLE 4.1.1: COMPARING THE SOLUTION OF THE APPROXIMATE AND THE EXISTING 
METHOD FOR PROBLEM 4.1.1

X Exact Solution Result of New Method Error in New Method

Order 𝑃 = 5

Error in Tanner (1979)

Order 𝑃 = 4 

0.2 1.22121001337746352620 1.22121000401169152860 9.36577199 × 10−09 2.40500000 × 10−05

0.4 1.48883473296637175650 1.48883477650976717200 4.35433954 × 10−08 7.71670000 × 10−05

0.6 1.80736134919720764840 1.80736138815762258600 3.89604149 × 10−08 7.94945000 × 10−06

0.8 2.17981922624938085950 2.17981921459690672930 1.16524741 × 10−08 4.34949000 × 10−03

1.0 2.60827491835217941000 2.60827483474311471480 8.36090470 × 10−08 1.83199620 × 10−02



TABLE 4.1.2: COMPARING THE SOLUTION OF THE APPROXIMATE AND THE  

                         EXISTING METHOD FOR PROBLEM 4.1.2

X Exact Solution Result of New Method Error in New Method

Order 𝑃 = 5 

Error in Adesanya 

[2]

Order 𝑃 = 6
0.1 0.00499995518745601000 0.00499995833058056099 3.14312455 × 10−09 4.27300000 × 10−08 

0.2 0.01999865908023810000 0.01999866682345690130 7.74321880 × 10−09 1.20759000 × 10−06 

0.3 0.04498987410259470000 0.04498987942740723500 5.32481254 × 10−09 8.60719000 × 10−06 

0.4 0.07995737735167610000 0.07995737788388623047 5.32210130 × 10−10 3.40900400 × 10−05 

0.5 0.12487004764653700000 0.12487005733490623182 9.68836923 × 10−09 9.74068000 × 10−05 

0.6 0.17967712636121700000 0.17967714100994159450 1.46487246 × 10−08 2.25711000 × 10−04 

0.7 0.24430361290038500000 0.24430361658620586118 3.68582086 × 10−09 4.51454700 × 10−04 

0.8 0.31864597946467400000 0.31864600868048815589 2.92158142 × 10−08 8.08472900 × 10−04 

0.9 0.40256860621313400000 0.40256861961077550241 1.33976415 × 10−08 1.32622070 × 10−03 

1.0 0.49590033762933700000 0.49590038143998373466 4.38106467 × 10−08 2.02205460 × 10−03 



TABLE 4.1.3: ABSOLUTE ERRORS COMPARING THE EXACT AND NUMERICAL  

                        SOLUTION OF HTEPM FOR PROBLEM 4.1.3

X Exact Solution Result of New Method Error in New Method

Order 𝑃 = 5 

0.1 0.170440346269364 0.17044034739217347603 1.12280948 × 10−09

0.2 0.141582173138664 0.14158217447659620875 1.33793221 × 10−09

0.3 0.113282963581607 0.11328296817008674018 4.58847974 × 10−09

0.4 0.0855545249227360 0.08555454145299195369 1.65302560 × 10−08

0.5 0.0585436828645928 0.05854370999334741200 2.71287546 × 10−08

0.6 0.0325108774782471 0.03251091543736197638 3.79591149 × 10−08

0.7 0.00780685408274400 0.00780690667931403256 5.25965700 × 10−08

0.8 -0.151523368042584 -0.1515226448987367326 7.23143847 × 10−08

0.9 -0.359116451185857 -0.3591154842620219391 9.66923835 × 10−08

1.0 -0.540041077972614 -0.5400398437640223413 1.23420860 × 10−07



5.0 DISCUSSION OF RESULTS

Problems 4.1.1 is a non-linear problem derived by Tanner to investigate the 

motion of the contact line for a thin oil drop spreading on a horizontal surface. 

Problem 4.1.2 considered Blassius equation in thermodynamics. The non-

linear Genesio equation of problem 4.1.3 is a non-linear chaotic system from 

[15]. The results were displayed in Tables 4.1.1, 4.1.2 and 4.1.3 respectively. 

The absolute errors obtained from tables 4.1.1 and 4.1.2 revealed that on 

comparison with the exact solution, the low errors resulted demonstrate their 

effectiveness and accuracy as the schemes performed favorably well. The 

exact solution, however, for problems 4.1.1, 4.1.2, and 4.1.3 were not 

available. Hence, they were generated directly using Maple software 

environment



6.0  CONCLUSION  

The construction of a new class of continuous implicit two-step hybrid scheme 

capable of solving Initial Value problems of third order ODEs has been the central 

concern in this work. The Orthogonal Polynomials valid in the interval [−1,1] with 

respect to weight function 𝑤(𝑥) = 1 +
𝑥

2
 have been chosen as basis functions to 

develop the schemes using interpolation and collocation techniques with the 

incorporation of equally spaced off-step points in order to approximate the solutions 

of IVPs. The scheme is capable of handling non-linear application problems. Tables 

1, 2 and 3 displays the accuracy of the numerical results of the HTEPM with the 

exact solution and existing methods. The desirability and superiority of the method 

have been established by the numerical results. 
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