
Principles of Operating System Page 1 
 

 

 

MATHEMATICAL AND COMPUTING SCIENCE DEPARTMENT 

 

 

 

PRINCIPLES OF OPERATING SYSTEM 

 

 

 

 

 

LECTURE NOTE 

 

AYEPEKU F.O 

 

 

 

 

 

 



Principles of Operating System Page 2 
 

Table of Contents 

Chapter 1.  Introduction to Operating Systems 

o Definition and role of operating systems 

o Historical overview of operating systems evolution 

o Basic functions and components of operating systems 

o Overview of concurrent and distributed operating systems 

Chapter 2.  Process Management 

o Understanding processes  

o Process states and transitions 

o Process creation, termination, and communication 

Chapter 3: Process Scheduling 

o Importance of process scheduling in multitasking environments 

o Scheduling algorithms (FCFS, SJF, Round Robin, Priority Scheduling) 

o Real-time scheduling considerations 

Chapter 4:  Inter-Process Communication (IPC) 

o Need for IPC in concurrent systems 

o Message passing vs. shared memory communication 

o IPC mechanisms provided by operating systems (pipes, message queues, shared 

memory) 

o Synchronization and coordination techniques for IPC 

Chapter 5:  Memory Management Techniques 

o Memory hierarchy and organization 

o Memory allocation strategies (paging, segmentation, buddy system) 

o Virtual memory concepts and techniques (paging, segmentation, TLB) 

o Memory protection and access control mechanisms 



Principles of Operating System Page 3 
 

Chapter 6: I/O Management 

o Basics of I/O devices and operations 

o I/O device management techniques (polling, interrupts, DMA) 

o I/O scheduling algorithms (FCFS, SSTF, SCAN) 

o Device drivers and I/O subsystem organization 

Chapter 7: Deadlock Avoidance 

o Understanding deadlock and its causes 

o Detection and recovery techniques for deadlock 

o Deadlock prevention strategies (resource allocation graphs, Banker's algorithm) 

o Deadlock avoidance using dynamic allocation and ordering resources 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Principles of Operating System Page 4 
 

CHAPTER ONE 

Introduction to Operating Systems 

Definition and Purpose of Operating Systems: 

An operating system (OS) is a software layer that acts as an intermediary between computer 

hardware and user applications. It manages hardware resources, provides essential services to 

applications, and facilitates user interaction with the computer system. The primary purposes of 

an operating system include: 

1. Resource Management: The OS manages hardware resources such as CPU, memory, 

storage devices, and input/output (I/O) devices. It allocates these resources efficiently 

among different processes and users to ensure optimal performance and utilization. 

2. Process Management: It facilitates the creation, scheduling, and execution of processes 

or programs. The OS manages process synchronization, communication, and inter-

process coordination to ensure smooth operation and prevent conflicts. 

3. Memory Management: The OS allocates and deallocates memory space for processes, 

manages virtual memory, and handles memory protection to prevent unauthorized access 

and ensure data integrity. 

4. File System Management: It provides a hierarchical structure for organizing and storing 

files on storage devices. The OS handles file creation, deletion, access control, and data 

storage/retrieval operations. 

5. Device Management: The OS controls communication with input/output devices such as 

keyboards, mice, printers, and network interfaces. It provides device drivers and manages 

device access, ensuring efficient data transfer and device utilization. 

6. User Interface: The OS provides a user-friendly interface for interacting with the 

computer system. This can include command-line interfaces (CLI), graphical user 

interfaces (GUI), or a combination of both, depending on the OS and user preferences. 

7. Security and Protection: It implements security measures to protect system resources, 

data, and user privacy. This includes user authentication, access control mechanisms, 

encryption, and malware detection/prevention. 

 



Principles of Operating System Page 5 
 

Evolution of Operating Systems: 

The evolution of operating systems can be traced through several key stages, each marked by 

significant advancements in technology and functionality: 

1. Serial Processing Systems: Early computers operated in a serial processing mode, 

executing one program at a time without multitasking capabilities. Examples include the 

ENIAC and UNIVAC systems. 

2. Batch Processing Systems: Batch processing systems emerged in the 1950s, allowing 

multiple jobs to be executed sequentially without user intervention. Programs were 

submitted in batches, and the OS managed job scheduling, resource allocation, and I/O 

operations. IBM's OS/360 is a notable example of a batch processing OS. 

3. Time-Sharing Systems: Time-sharing systems, developed in the 1960s, enabled multiple 

users to interact with a computer simultaneously. These systems divided CPU time 

among multiple processes, providing each user with the illusion of having a dedicated 

computer. The introduction of interactive terminals and multi-user operating systems like 

CTSS (Compatible Time-Sharing System) and UNIX revolutionized computing by 

enabling real-time interaction and collaboration. 

4. Distributed Systems: Distributed operating systems emerged in the 1980s, enabling the 

coordination and management of resources across multiple interconnected computers. 

Distributed OSs facilitate distributed computing, allowing tasks to be divided among 

networked machines for improved scalability, fault tolerance, and performance. 

Examples include Google's Android, Microsoft's Windows Distributed File System 

(DFS), and various cluster computing systems. 

5. Real-Time Systems: Real-time operating systems (RTOS) are designed to meet strict 

timing constraints and deadlines in applications where timely response is critical. RTOSs 

prioritize tasks based on their urgency and guarantee timely execution, making them 

suitable for embedded systems, control systems, and mission-critical applications. 

Examples include VxWorks, QNX, and FreeRTOS. 

 

 



Principles of Operating System Page 6 
 

Types of Operating Systems: 

 

1. Single-User Operating System: 

 Features: 

o Designed to support only one user at a time. 

o Primarily runs on personal computers, laptops, and workstations. 

o Provides a user-friendly interface for individual users to interact with the system. 

o Manages resources for a single user's tasks and applications. 

 Usage: 

o Personal computing, home use, and small businesses where only one user 

interacts with the computer at a time. 

 Examples: 

o Microsoft Windows: Versions of Windows such as Windows 10, Windows 11, 

and Windows 7 are examples of single-user operating systems widely used on 

personal computers and laptops. 

o macOS: Apple's macOS operating system is used on Macintosh computers and is 

designed for single-user environments, providing a seamless user experience with 

a graphical user interface. 

2. Multi-User Operating System: 

 Features: 

o Supports multiple users to interact with the system simultaneously. 



Principles of Operating System Page 7 
 

o Enables concurrent execution of processes and tasks for multiple users. 

o Provides user isolation and access control mechanisms to protect user data and 

resources. 

o Facilitates resource sharing and collaboration among users. 

 Usage: 

o Servers, mainframes, shared computing environments, and networked systems 

where multiple users need access to shared resources and services. 

 Examples: 

o UNIX and UNIX-like Systems: UNIX operating systems, such as Linux and 

FreeBSD, are designed to support multi-user environments with features for user 

authentication, access control, and resource sharing. They are commonly used in 

server environments and shared computing systems. 

o Windows Server: Microsoft's Windows Server operating system is specifically 

designed for server environments and supports multiple users, applications, and 

services concurrently. It provides features such as Active Directory for user 

authentication and access control in enterprise environments. 

Comparison: 

 User Interaction: 

o In single-user operating systems, only one user interacts with the system at a time, 

typically through a personal computer or workstation. 

o In multi-user operating systems, multiple users interact with the system 

simultaneously, accessing shared resources and services over a network. 

 Resource Management: 

o Single-user operating systems manage resources for a single user's tasks and 

applications, optimizing performance and responsiveness for individual use. 

o Multi-user operating systems manage resources efficiently among multiple users, 

providing fair access and equitable distribution of resources for shared computing 

environments. 

 Security and Access Control: 

o Single-user operating systems focus on securing resources and data for a single 

user, often relying on user accounts and passwords for access control. 



Principles of Operating System Page 8 
 

o Multi-user operating systems implement robust security measures for user 

isolation, access control, and data protection to ensure confidentiality, integrity, 

and availability in shared computing environments. 

 3. Batch Operating System: 

 Features: 

o Processes jobs in batches without user intervention. 

o Sequential execution of tasks. 

o Typically used in environments where large-scale repetitive tasks need to be 

executed efficiently. 

 Usage: 

o Mainframes and server environments where repetitive tasks such as payroll 

processing, report generation, and batch data processing are common. 

 Examples: 

o IBM OS/360, z/OS: IBM's mainframe operating systems that support batch 

processing. 

o UNIX Batch System: Early versions of UNIX featured batch processing 

capabilities. 

4. Multiprocessing Operating System: 

 Features: 

o Supports concurrent execution of multiple processes on multiple CPUs. 

o Utilizes multiprocessing capabilities for improved performance and throughput. 

o Provides efficient task scheduling and resource management across multiple 

processors. 

 Usage: 

o High-performance computing environments, servers, and workstations with 

multiple CPU cores. 

 Examples: 

o Linux: A popular open-source operating system that supports multiprocessing 

across multiple CPU cores. 



Principles of Operating System Page 9 
 

o Windows Server: Microsoft's server operating system that efficiently utilizes 

multiple processors for server workloads. 

5. Time-Sharing Operating System: 

 Features: 

o Allows multiple users to interact with the system simultaneously. 

o Divides CPU time among active processes or users. 

o Provides responsive and interactive user experience through time-slicing. 

 Usage: 

o Multi-user environments such as servers, mainframes, and shared computing 

systems. 

 Examples: 

o UNIX: Early versions of UNIX introduced time-sharing capabilities, allowing 

multiple users to access a system concurrently. 

o Linux: Modern distributions of Linux support time-sharing features for multi-user 

environments. 

6. Multitasking Operating System: 

 Features: 

o Enables a single user to run multiple programs concurrently. 

o Rapid context switching between tasks to provide the illusion of parallel 

execution. 

o Efficient utilization of CPU resources. 

 Usage: 

o Personal computers, laptops, and workstations where users perform multiple tasks 

simultaneously. 

 Examples: 

o Microsoft Windows: Windows operating systems support multitasking, allowing 

users to run multiple applications concurrently. 

o macOS: Apple's macOS provides multitasking capabilities for users to switch 

between applications seamlessly. 



Principles of Operating System Page 10 
 

7. Multiprocess Operating System: 

 Features: 

o Supports concurrent execution of multiple processes within a single computer 

system. 

o Manages processes effectively, whether running on a single CPU core or multiple 

CPU cores. 

o Provides efficient process scheduling and resource management. 

 Usage: 

o Personal computers, servers, and workstations with multi-core processors. 

 Examples: 

o Windows NT: Microsoft's Windows NT operating system family supports 

multiprocess execution across multiple CPU cores. 

o Linux: Linux kernels are designed to efficiently manage multiple processes across 

multi-core systems. 

8. Distributed Operating System: 

 Features: 

o Manages resources and coordinates activities across multiple networked 

computers. 

o Treats networked computers as a single integrated system. 

o Provides transparent access to resources across distributed nodes. 

 Usage: 

o Networked environments, cloud computing, peer-to-peer networks, and 

distributed systems. 

 Examples: 

o Google's Android: Android is a distributed operating system used in mobile 

devices, managing resources across various hardware components. 

o Apache Hadoop: Hadoop is an open-source distributed operating system used for 

distributed storage and processing of large datasets. 

9. Real-Time Operating System (RTOS): 



Principles of Operating System Page 11 
 

 Features: 

o Guarantees timely responses to events within specified time constraints. 

o Provides deterministic behavior and predictable response times. 

o Used in time-critical applications where responsiveness is crucial. 

 Usage: 

o Embedded systems, control systems, automotive, aerospace, and industrial 

applications. 

 Examples: 

o VxWorks: VxWorks is a real-time operating system commonly used in embedded 

systems and mission-critical applications. 

o FreeRTOS: FreeRTOS is an open-source real-time operating system designed for 

embedded microcontrollers and IoT devices. 

Components of Operating Systems: 

1. Kernel: 

o The kernel is the core component of an operating system, responsible for 

managing hardware resources and providing essential services to user programs. 

o It handles tasks such as process management, memory management, device 

management, and system calls. 

o The kernel operates in privileged mode, with direct access to hardware resources, 

and ensures proper isolation and protection between user processes. 

2. Process Management: 

o Process management involves creating, scheduling, synchronizing, and 

terminating processes. 

o The OS maintains a process table containing information about active processes, 

including their state, priority, and resource usage. 

o It schedules processes for execution on the CPU, using algorithms such as round-

robin, priority-based scheduling, or multi-level feedback queues. 

o Process synchronization mechanisms, such as semaphores, mutexes, and 

monitors, are used to coordinate access to shared resources and prevent race 

conditions. 

3. Memory Management: 



Principles of Operating System Page 12 
 

o Memory management involves managing system memory, including allocation, 

deallocation, and protection. 

o The OS provides mechanisms for virtual memory, allowing processes to use more 

memory than physically available by swapping data between main memory and 

secondary storage. 

o Memory protection mechanisms prevent processes from accessing memory 

locations outside their allocated address space, ensuring memory safety and 

security. 

o Techniques such as paging, segmentation, and demand paging are used to 

optimize memory usage and minimize fragmentation. 

4. File System: 

o The file system provides a hierarchical organization for storing and accessing files 

and directories on storage devices. 

o It manages file metadata, including file attributes (e.g., name, size, permissions, 

timestamps) and file allocation information. 

o The OS provides file system drivers to support different file system formats, such 

as FAT, NTFS, ext4, and HFS+. 

o File system operations, such as file creation, deletion, reading, and writing, are 

performed through system calls and file APIs. 

5. Device Management: 

o Device management involves controlling input/output devices such as keyboards, 

mice, displays, printers, and network interfaces. 

o The OS provides device drivers to communicate with hardware devices and 

abstract device-specific details from user applications. 

o Device drivers handle device initialization, configuration, and communication, 

translating high-level I/O requests into device-specific commands. 

o Input/output operations are managed through device drivers and device 

controllers, ensuring efficient data transfer and error handling. 

6. User Interface: 

o The user interface allows users to interact with the operating system and execute 

commands or applications. 

o Graphical user interfaces (GUIs) provide visual elements such as windows, icons, 

menus, and buttons for user interaction. 



Principles of Operating System Page 13 
 

o Command-line interfaces (CLIs) allow users to interact with the system through 

text-based commands and shell programs. 

o The OS provides user interface components, such as window managers, desktop 

environments, and command interpreters, to facilitate user interaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Principles of Operating System Page 14 
 

CHAPTER TWO 

Process Management 

Process 

A process is a running program that serves as the foundation for all computation. The procedure 

is not the same as computer code, although it is very similar. In contrast to the program, which is 

often regarded as some „passive‟ entity, a process is an „active‟ entity. Hardware status, RAM, 

CPU, and other attributes are among the attributes held by the process. 

A process is essentially running software. The execution of any process must occur in a specific 

order. A process refers to an entity that helps in representing the fundamental unit of work that 

must be implemented in any system. 

In other words, we write the computer programs in the form of a text file, thus when we run 

them, these turn into processes that complete all of the duties specified in the program. 

A program can be segregated into four pieces when put into memory to become a process: stack, 

heap, text, and data. The diagram below depicts a simplified representation of a process in the 

main memory. 

Components of a Process 

It is divided into the following four sections: 

  

 

 

 

 

 

 



Principles of Operating System Page 15 
 

Stack: Temporary data like method or function parameters, return address, and local variables 

are stored in the process stack. 

Heap: This is the memory that is dynamically allocated to a process during its execution. 

Text: This comprises the contents present in the processor‟s registers as well as the current 

activity reflected by the value of the program counter. 

Data: The global as well as static variables are included in this section. 

Program 

A program is a piece of code which may be a single line or millions of lines. A computer 

program is usually written by a computer programmer in a programming language. For example, 

here is a simple program written in C programming language − 

#include <stdio.h> 

int main() { 

   printf("Hello, World! \n"); 

   return 0; 

} 

A computer program is a collection of instructions that performs a specific task when executed 

by a computer. When we compare a program with a process, we can conclude that a process is a 

dynamic instance of a computer program. 

A part of a computer program that performs a well-defined task is known as an algorithm. A 

collection of computer programs, libraries and related data are referred to as a software. 

Key Components of Process Management 

Below are some key components of process management. 

 Process mapping: Creating visual representations of processes to understand how tasks 

flow, identify dependencies, and uncover improvement opportunities.  



Principles of Operating System Page 16 
 

 Process analysis: Evaluating processes to identify bottlenecks, inefficiencies, and areas 

for improvement.  

 Process redesign: Making changes to existing processes or creating new ones to 

optimize workflows and enhance performance.  

 Process implementation: Introducing the redesigned processes into the organization and 

ensuring proper execution.  

 Process monitoring and control: Tracking process performance, measuring key metrics, 

and implementing control mechanisms to maintain efficiency and effectiveness. 

Importance of Process Management System 

It is critical to comprehend the significance of process management for any manager overseeing 

a firm. It does more than just make workflows smooth. Process Management makes sure that 

every part of business operations moves as quickly as possible. 

By implementing business processes management, we can avoid errors caused by inefficient 

human labor and cut down on time lost on repetitive operations. It also keeps data loss and 

process step errors at bay. Additionally, process management guarantees that resources are 

employed effectively, increasing the cost-effectiveness of our company. Process management not 

only makes business operations better, but it also makes sure that our procedures meet the needs 

of your clients. This raises income and improves consumer happiness.  

Characteristics of a Process 

A process has the following attributes. 

 Process Id: A unique identifier assigned by the operating system. 

 Process State: Can be ready, running, etc. 

 CPU registers: Like the Program Counter (CPU registers must be saved and restored 

when a process is swapped in and out of the CPU) 

https://www.geeksforgeeks.org/what-is-an-operating-system/


Principles of Operating System Page 17 
 

 Accounts information: Amount of CPU used for process execution, time limits, 

execution ID, etc 

 I/O status information: For example, devices allocated to the process, open files, etc 

 CPU scheduling information: For example, Priority (Different processes may have 

different priorities, for example, a shorter process assigned high priority in the shortest 

job first scheduling) 

Process Control Block (PCB) 

Every process has a process control block, which is a data structure managed by the operating 

system. An integer process ID (or PID) is used to identify the PCB. As shown below, PCB stores 

all of the information required to maintain track of a process. 

Process state: The process‟s present state, such as whether it‟s ready, waiting, running, or 

whatever. 

Process privileges: This is required in order to grant or deny access to system resources. 

Process ID: Each process in the OS has its own unique identifier. 

Pointer: It refers to a pointer that points to the parent process. 

Program counter: The program counter refers to a pointer that points to the address of the 

process‟s next instruction. 

CPU registers: Processes must be stored in various CPU registers for execution in the running 

state. 

CPU scheduling information 

Process priority and additional scheduling information are required for the process to be 

scheduled. 

Memory management information 



Principles of Operating System Page 18 
 

This includes information from the page table, memory limitations, and segment table, all of 

which are dependent on the amount of memory used by the OS. 

Accounting information 

This comprises CPU use for process execution, time constraints, and execution ID, among other 

things. 

IO status information 

This section includes a list of the process‟s I/O devices. 

The PCB architecture is fully dependent on the operating system, and different operating systems 

may include different information. A simplified diagram of a PCB is shown below. 

The PCB is kept for the duration of a procedure and then removed once the process is finished. 

 

 

 

 

 

 

All of the above attributes of a process are also known as the context of the process. Every 

process has its own process control block (PCB), i.e. each process will have a unique PCB. All 

of the above attributes are part of the PCB.  

States of Process 

A process is in one of the following states:  

 New: Newly Created Process (or) being-created process. 

http://en.wikipedia.org/wiki/Process_control_block


Principles of Operating System Page 19 
 

 Ready: After the creation process moves to the Ready state, i.e. the process is ready for 

execution. 

 Run: Currently running process in CPU (only one process at a time can be under 

execution in a single processor) 

 Wait (or Block): When a process requests I/O access. 

 Complete (or Terminated): The process completed its execution. 

 Suspended Ready: When the ready queue becomes full, some processes are moved to a 

suspended ready state 

 Suspended Block: When the waiting queue becomes full. 

 

Process vs Program 

A program is a piece of code that can be as simple as a single line or as complex as millions of 

lines. A computer program is usually developed in a programming language by a programmer. 

The process, on the other hand, is essentially a representation of the computer program that is 

now running. It has a comparatively shorter lifetime. 

Here is a basic program created in the C programming language as an example: 



Principles of Operating System Page 20 
 

#include <stdio.h> 

int main() { 

printf(“Hi, Subhadip! \n”); 

return 0; 

} 

A computer program refers to a set of instructions that, when executed by a computer, perform a 

certain purpose. We can deduce that a process refers to a dynamic instance of a computer 

program when we compare a program to a process. An algorithm is an element of a computer 

program that performs a certain task. A software package is a collection of computer programs, 

libraries, and related data. 

Advantages of Process Management 

 Improved Efficiency: Process management can help organizations identify bottlenecks 

and inefficiencies in their processes, allowing them to make changes to streamline 

workflows and increase productivity. 

 Cost Savings: By identifying and eliminating waste and inefficiencies, process 

management can help organizations reduce costs associated with their business 

operations. 

 Improved Quality: Process management can help organizations improve the quality of 

their products or services by standardizing processes and reducing errors. 

 Increased Customer Satisfaction: By improving efficiency and quality, process 

management can enhance the customer experience and increase satisfaction. 

 Compliance with Regulations: Process management can help organizations comply 

with regulatory requirements by ensuring that processes are properly documented, 

controlled, and monitored. 

 



Principles of Operating System Page 21 
 

Disadvantages of Process Management 

 Time and Resource Intensive: Implementing and maintaining process management 

initiatives can be time-consuming and require significant resources. 

 Resistance to Change: Some employees may resist changes to established processes, 

which can slow down or hinder the implementation of process management initiatives. 

 Overemphasis on Process: Overemphasis on the process can lead to a lack of focus on 

customer needs and other important aspects of business operations. 

 Risk of Standardization: Standardizing processes too much can limit flexibility and 

creativity, potentially stifling innovation. 

 Difficulty in Measuring Results: Measuring the effectiveness of process management 

initiatives can be difficult, making it challenging to determine their impact on 

organizational performance 

 

 

 

 

 

 

 

 

 

 

 



Principles of Operating System Page 22 
 

CHAPTER THREE 

Process Scheduling 

Process Scheduling 

The process scheduling is the activity of the process manager that handles the removal of the 

running process from the CPU and the selection of another process on the basis of a particular 

strategy. 

Process scheduling is an essential part of a Multiprogramming operating systems. Such operating 

systems allow more than one process to be loaded into the executable memory at a time and the 

loaded process shares the CPU using time multiplexing. 

Categories of Scheduling 

There are two categories of scheduling: 

1. Non-preemptive: Here the resource can‟t be taken from a process until the process 

completes execution. The switching of resources occurs when the running process 

terminates and moves to a waiting state. 

2. Preemptive: Here the OS allocates the resources to a process for a fixed amount of time. 

During resource allocation, the process switches from running state to ready state or from 

waiting state to ready state. This switching occurs as the CPU may give priority to other 

processes and replace the process with higher priority with the running process. 

Process Scheduling Queues 

The OS maintains all Process Control Blocks (PCBs) in Process Scheduling Queues. The OS 

maintains a separate queue for each of the process states and PCBs of all processes in the same 

execution state are placed in the same queue. When the state of a process is changed, its PCB is 

unlinked from its current queue and moved to its new state queue. 

The Operating System maintains the following important process scheduling queues − 

 Job queue − This queue keeps all the processes in the system. 



Principles of Operating System Page 23 
 

 Ready queue − This queue keeps a set of all processes residing in main memory, ready 

and waiting to execute. A new process is always put in this queue. 

 Device queues − The processes which are blocked due to unavailability of an I/O device 

constitute this queue. 

 

The OS can use different policies to manage each queue (FIFO, Round Robin, Priority, etc.). The 

OS scheduler determines how to move processes between the ready and run queues which can 

only have one entry per processor core on the system; in the above diagram, it has been merged 

with the CPU. 

Two-State Process Model 

Two-state process model refers to running and non-running states which are described below − 

S.N. State & Description 

1 
Running 

When a new process is created, it enters into the system as in the running state. 

2 
Not Running 

Processes that are not running are kept in queue, waiting for their turn to execute. Each 



Principles of Operating System Page 24 
 

entry in the queue is a pointer to a particular process. Queue is implemented by using linked 

list. Use of dispatcher is as follows. When a process is interrupted, that process is 

transferred in the waiting queue. If the process has completed or aborted, the process is 

discarded. In either case, the dispatcher then selects a process from the queue to execute. 

Schedulers 

Schedulers are special system software which handle process scheduling in various ways. Their 

main task is to select the jobs to be submitted into the system and to decide which process to run. 

Schedulers are of three types − 

 Long-Term Scheduler 

 Short-Term Scheduler 

 Medium-Term Scheduler 

Long Term Scheduler 

It is also called a job scheduler. A long-term scheduler determines which programs are admitted 

to the system for processing. It selects processes from the queue and loads them into memory for 

execution. Process loads into the memory for CPU scheduling. 

The primary objective of the job scheduler is to provide a balanced mix of jobs, such as I/O 

bound and processor bound. It also controls the degree of multiprogramming. If the degree of 

multiprogramming is stable, then the average rate of process creation must be equal to the 

average departure rate of processes leaving the system. 

On some systems, the long-term scheduler may not be available or minimal. Time-sharing 

operating systems have no long term scheduler. When a process changes the state from new to 

ready, then there is use of long-term scheduler. 

Short Term Scheduler 

It is also called as CPU scheduler. Its main objective is to increase system performance in 

accordance with the chosen set of criteria. It is the change of ready state to running state of the 



Principles of Operating System Page 25 
 

process. CPU scheduler selects a process among the processes that are ready to execute and 

allocates CPU to one of them. 

Short-term schedulers, also known as dispatchers, make the decision of which process to execute 

next. Short-term schedulers are faster than long-term schedulers. 

Medium Term Scheduler 

Medium-term scheduling is a part of swapping. It removes the processes from the memory. It 

reduces the degree of multiprogramming. The medium-term scheduler is in-charge of handling 

the swapped out-processes. 

A running process may become suspended if it makes an I/O request. A suspended processes 

cannot make any progress towards completion. In this condition, to remove the process from 

memory and make space for other processes, the suspended process is moved to the secondary 

storage. This process is called swapping, and the process is said to be swapped out or rolled out. 

Swapping may be necessary to improve the process mix. 

Comparison among Scheduler 

S.N. Long-Term Scheduler Short-Term Scheduler Medium-Term Scheduler 

1 It is a job scheduler It is a CPU scheduler 
It is a process swapping 

scheduler. 

2 
Speed is lesser than short term 

scheduler 

Speed is fastest among 

other two 

Speed is in between both short 

and long term scheduler. 

3 
It controls the degree of 

multiprogramming 

It provides lesser control 

over degree of 

multiprogramming 

It reduces the degree of 

multiprogramming. 

4 
It is almost absent or minimal 

in time sharing system 

It is also minimal in time 

sharing system 

It is a part of Time sharing 

systems. 



Principles of Operating System Page 26 
 

5 

It selects processes from pool 

and loads them into memory 

for execution 

It selects those processes 

which are ready to execute 

It can re-introduce the process 

into memory and execution can 

be continued. 

Scheduling algorithms 

A Process Scheduler schedules different processes to be assigned to the CPU based on particular 

scheduling algorithms. There are six popular process scheduling algorithms which we are going 

to discuss in this chapter − 

 First-Come, First-Served (FCFS) Scheduling 

 Shortest-Job-Next (SJN) Scheduling 

 Priority Scheduling 

 Shortest Remaining Time 

 Round Robin(RR) Scheduling 

 Multiple-Level Queues Scheduling 

These algorithms are either non-preemptive or preemptive. Non-preemptive algorithms are 

designed so that once a process enters the running state, it cannot be preempted until it completes 

its allotted time, whereas the preemptive scheduling is based on priority where a scheduler may 

preempt a low priority running process anytime when a high priority process enters into a ready 

state. 

First Come First Serve (FCFS) 

 Jobs are executed on first come, first serve basis. 

 It is a non-preemptive, pre-emptive scheduling algorithm. 

 Easy to understand and implement. 

 Its implementation is based on FIFO queue. 

 Poor in performance as average wait time is high. 



Principles of Operating System Page 27 
 

 

Wait time of each process is as follows − 

Process Wait Time : Service Time - Arrival Time 

P0 0 - 0 = 0 

P1 5 - 1 = 4 

P2 8 - 2 = 6 

P3 16 - 3 = 13 

Average Wait Time: (0+4+6+13) / 4 = 5.75 

Shortest Job Next (SJN) 

 This is also known as shortest job first, or SJF 

 This is a non-preemptive, pre-emptive scheduling algorithm. 

 Best approach to minimize waiting time. 

 Easy to implement in Batch systems where required CPU time is known in advance. 

 Impossible to implement in interactive systems where required CPU time is not known. 

 The processer should know in advance how much time process will take. 



Principles of Operating System Page 28 
 

Given: Table of processes, and their Arrival time, Execution time 

Process Arrival Time Execution Time Service Time 

P0 0 5 0 

P1 1 3 5 

P2 2 8 14 

P3 3 6 8 

 

Waiting time of each process is as follows − 

Process Waiting Time 

P0 0 - 0 = 0 

P1 5 - 1 = 4 

P2 14 - 2 = 12 

P3 8 - 3 = 5 



Principles of Operating System Page 29 
 

Average Wait Time: (0 + 4 + 12 + 5)/4 = 21 / 4 = 5.25 

Priority Based Scheduling 

 Priority scheduling is a non-preemptive algorithm and one of the most common 

scheduling algorithms in batch systems. 

 Each process is assigned a priority. Process with highest priority is to be executed first 

and so on. 

 Processes with same priority are executed on first come first served basis. 

 Priority can be decided based on memory requirements, time requirements or any other 

resource requirement. 

Given: Table of processes, and their Arrival time, Execution time, and priority. Here we are 

considering 1 is the lowest priority. 

Process Arrival Time Execution Time Priority Service Time 

P0 0 5 1 0 

P1 1 3 2 11 

P2 2 8 1 14 

P3 3 6 3 5 

 



Principles of Operating System Page 30 
 

Waiting time of each process is as follows − 

Process Waiting Time 

P0 0 - 0 = 0 

P1 11 - 1 = 10 

P2 14 - 2 = 12 

P3 5 - 3 = 2 

Average Wait Time: (0 + 10 + 12 + 2)/4 = 24 / 4 = 6 

Shortest Remaining Time 

 Shortest remaining time (SRT) is the preemptive version of the SJN algorithm. 

 The processor is allocated to the job closest to completion but it can be preempted by a 

newer ready job with shorter time to completion. 

 Impossible to implement in interactive systems where required CPU time is not known. 

 It is often used in batch environments where short jobs need to give preference. 

Round Robin Scheduling 

 Round Robin is the preemptive process scheduling algorithm. 

 Each process is provided a fix time to execute, it is called a quantum. 

 Once a process is executed for a given time period, it is preempted and other process 

executes for a given time period. 

 Context switching is used to save states of preempted processes. 



Principles of Operating System Page 31 
 

 

Wait time of each process is as follows − 

Process Wait Time : Service Time - Arrival Time 

P0 (0 - 0) + (12 - 3) = 9 

P1 (3 - 1) = 2 

P2 (6 - 2) + (14 - 9) + (20 - 17) = 12 

P3 (9 - 3) + (17 - 12) = 11 

Average Wait Time: (9+2+12+11) / 4 = 8.5 

Multiple-Level Queues Scheduling 

Multiple-level queues are not an independent scheduling algorithm. They make use of other 

existing algorithms to group and schedule jobs with common characteristics. 

 Multiple queues are maintained for processes with common characteristics. 

 Each queue can have its own scheduling algorithms. 

 Priorities are assigned to each queue. 

For example, CPU-bound jobs can be scheduled in one queue and all I/O-bound jobs in another 

queue. The Process Scheduler then alternately selects jobs from each queue and assigns them to 

the CPU based on the algorithm assigned to the queue. 

 



Principles of Operating System Page 32 
 

Switching 

A context switching is the mechanism to store and restore the state or context of a CPU in 

Process Control block so that a process execution can be resumed from the same point at a later 

time. Using this technique, a context switcher enables multiple processes to share a single CPU. 

Context switching is an essential part of a multitasking operating system features. 

When the scheduler switches the CPU from executing one process to execute another, the state 

from the current running process is stored into the process control block. After this, the state for 

the process to run next is loaded from its own PCB and used to set the PC, registers, etc. At that 

point, the second process can start executing. Context 

 



Principles of Operating System Page 33 
 

Context switches are computationally intensive since register and memory state must be saved 

and restored. To avoid the amount of context switching time, some hardware systems employ 

two or more sets of processor registers. When the process is switched, the following information 

is stored for later use. 

 Program Counter 

 Scheduling information 

 Base and limit register value 

 Currently used register 

 Changed State 

 I/O State information 

 Accounting information 

Real-time scheduling is crucial in systems where tasks or processes must meet strict timing 

constraints to ensure correct operation. These systems include embedded systems, control 

systems, multimedia applications, and real-time data processing. Real-time scheduling 

considerations involve ensuring that tasks are executed within their deadlines, minimizing 

response times, and providing deterministic behavior. Here are some key considerations: 

1. Priority-Based Scheduling: 

o Tasks are assigned priorities based on their importance and timing requirements. 

o Real-time operating systems (RTOS) use priority-based scheduling algorithms 

like Rate-Monotonic Scheduling (RMS) or Earliest Deadline First (EDF) to 

schedule tasks. 

o Higher-priority tasks preempt lower-priority ones to ensure critical tasks meet 

their deadlines. 

2. Determinism: 

o Real-time systems must exhibit deterministic behavior, where the timing and 

outcome of tasks are predictable and repeatable. 

o Non-deterministic factors such as interrupt latency, task preemption, and resource 

contention should be minimized or accounted for in the scheduling algorithm. 

3. Task Deadline Management: 

o Each task is associated with a deadline that specifies when it must complete its 

execution. 



Principles of Operating System Page 34 
 

o Scheduling algorithms ensure that tasks are executed in a manner that meets their 

deadlines. 

o Missed deadlines may result in system failures or degraded performance, 

especially in safety-critical or mission-critical applications. 

4. Interrupt Handling: 

o Interrupts can disrupt the execution of tasks and introduce non-deterministic 

behavior. 

o Real-time systems should minimize interrupt latency, the time between the 

occurrence of an interrupt and its handling. 

o Critical interrupts may be prioritized, and non-essential interrupts may be 

temporarily disabled during critical task execution. 

5. Resource Management: 

o Proper allocation and management of system resources (CPU time, memory, I/O 

devices) are essential for real-time scheduling. 

o Resource contention can lead to delays and affect the timing behavior of tasks. 

o Techniques such as resource reservation, priority inheritance, and priority ceiling 

protocols help manage resource access and prevent priority inversion. 

6. Response Time Analysis: 

o Real-time systems must guarantee maximum response times for critical tasks. 

o Response time analysis evaluates the worst-case response time of tasks under 

different scheduling scenarios to ensure deadlines are met. 

o Techniques like Worst-Case Execution Time (WCET) analysis and schedulability 

analysis help determine if a system's scheduling policy can meet its timing 

requirements. 

7. Overhead and Efficiency: 

o Real-time scheduling algorithms should be efficient and impose minimal 

overhead on system performance. 

o Context switching, scheduling overhead, and algorithm complexity should be kept 

low to maximize system throughput and responsiveness. 

 

 



Principles of Operating System Page 35 
 

 

 

 

1.  

Soft Real-Time Scheduling: 

o In soft real-time scheduling, meeting deadlines is desirable but not mandatory. 

o If a deadline is missed, it may lead to degraded performance but not system 

failure. 

o Examples include multimedia streaming, online gaming, and some types of data 

processing applications. 

2. Hard Real-Time Scheduling: 

o In hard real-time scheduling, meeting deadlines is critical. 

o Missing a deadline can lead to system failure or catastrophic consequences. 

o Examples include aircraft control systems, medical devices, and automotive 

safety systems. 

3. Static Scheduling: 

o In static scheduling, task priorities and scheduling decisions are determined at 

system design time and remain fixed. 

o Task execution times and deadlines are known and constant. 

o Examples include Rate-Monotonic Scheduling (RMS) and Deadline Monotonic 

Scheduling (DMS). 

4. Dynamic Scheduling: 

o In dynamic scheduling, task priorities and scheduling decisions can change 

dynamically at runtime. 

o Task priorities may be adjusted based on system conditions or runtime events. 



Principles of Operating System Page 36 
 

o Examples include Earliest Deadline First (EDF) scheduling and Least Slack Time 

First (LST) scheduling. 

5. Preemptive Scheduling: 

o In preemptive scheduling, higher-priority tasks can interrupt the execution of 

lower-priority tasks. 

o When a higher-priority task becomes ready to execute, it preempts the currently 

running task and begins execution immediately. 

o Preemptive scheduling ensures that critical tasks meet their deadlines even if 

lower-priority tasks are running. 

o Example: A real-time operating system (RTOS) using a preemptive scheduling 

algorithm like RMS or EDF. 

6. Non-preemptive Scheduling: 

o In non-preemptive scheduling, once a task starts execution, it continues until it 

completes or voluntarily yields the CPU. 

o Higher-priority tasks cannot interrupt the execution of lower-priority tasks. 

o Non-preemptive scheduling may be simpler to implement but can lead to missed 

deadlines if a high-priority task is blocked by a lower-priority task. 

o Example: A single-threaded application using a non-preemptive scheduling 

policy. 

 

 

 

 

 

 

 

 



Principles of Operating System Page 37 
 

CHAPTER FOUR 

Inter-Process Communication (IPC) 

Inter process communication (IPC) was the transfer of information and interaction between 

multiple processes in an electronic system. Every operation in a tasking process structure runs on 

its own, as well as communication between them is required if these processes require to 

exchange of information or coordination of what they are doing 

IPC is an essential part of contemporary operating systems and can be employed in a variety of 

applications, which include simple control-line appliances to complicated systems with 

distributed components. The primary goal of IPC is to make the transmission of knowledge 

among processes more private and effective. 

A diagram that illustrates inter-process communication is as follows − 

 

 

 

 

 

 

 

 

Synchronization in Interprocess Communication 



Principles of Operating System Page 38 
 

Synchronization is a necessary part of interprocess communication. It is either provided by the 

interprocess control mechanism or handled by the communicating processes. Some of the 

methods to provide synchronization are as follows − 

 Semaphore 

A semaphore is a variable that controls the access to a common resource by multiple 

processes. The two types of semaphores are binary semaphores and counting semaphores. 

 Mutual Exclusion 

Mutual exclusion requires that only one process thread can enter the critical section at a 

time. This is useful for synchronization and also prevents race conditions. 

 Barrier 

A barrier does not allow individual processes to proceed until all the processes reach it. 

Many parallel languages and collective routines impose barriers. 

 Spinlock 

This is a type of lock. The processes trying to acquire this lock wait in a loop while 

checking if the lock is available or not. This is known as busy waiting because the 

process is not doing any useful operation even though it is active. 

Approaches to Interprocess Communication 

The different approaches to implement interprocess communication are given as follows − 

 Pipe 

A pipe is a data channel that is unidirectional. Two pipes can be used to create a two-way 

data channel between two processes. This uses standard input and output methods. Pipes 

are used in all POSIX systems as well as Windows operating systems. 

 Socket 

https://www.tutorialspoint.com/semaphores-in-operating-system


Principles of Operating System Page 39 
 

The socket is the endpoint for sending or receiving data in a network. This is true for data 

sent between processes on the same computer or data sent between different computers 

on the same network. Most of the operating systems use sockets for interprocess 

communication. 

 File 

A file is a data record that may be stored on a disk or acquired on demand by a file 

server. Multiple processes can access a file as required. All operating systems use files 

for data storage. 

 Signal 

Signals are useful in interprocess communication in a limited way. They are system 

messages that are sent from one process to another. Normally, signals are not used to 

transfer data but are used for remote commands between processes. 

 Shared Memory 

Shared memory is the memory that can be simultaneously accessed by multiple 

processes. This is done so that the processes can communicate with each other. All 

POSIX systems, as well as Windows operating systems use shared memory. 

 Message Queue 

Multiple processes can read and write data to the message queue without being connected 

to each other. Messages are stored in the queue until their recipient retrieves them. 

Message queues are quite useful for interprocess communication and are used by most 

operating systems. 

A diagram that demonstrates message queue and shared memory methods of interprocess 

communication is as follows − 



Principles of Operating System Page 40 
 

 

Different Methods of IPC 

 



Principles of Operating System Page 41 
 

Methods of IPC Info graphic 

There are several IPC methods accessible, each of which has its own set of benefits and 

drawbacks. Several of the most common IPC techniques are − 

 Pipes − A pipe is a channel of communication that is one-way that enables a single 

procedure to transmit data to a different one. Pipes can be identified as or unidentified. 

The operations running in anonymous pipes have to be associated (i.e., both parent and 

child processes). Known pipes, on the contrary together, may be utilized by processes 

that are separate from one another. 

 Message Queues − Message queues are employed for inter-process interaction when 

both the sending and getting processes do not need to be present at the same time. The 

asynchronous communications may be sent and received. A message in a queue 

possesses a particular final destination and is accessible to multiple processes 

 Shared Memory − Shared memory is an inter process communication method that 

enables various programs to make use of a single storage region. This allows them to 

effectively and effectively share data. Sharing memory is frequently employed in 

applications that are extremely fast. 

 Semaphores − Semaphores serve to keep the utilization of resources that are shared 

synchronized. Their companies serve as responses that limit the number of procedures 

that may utilize a resource that is shared at any given time. Semaphores are useful for 

implementing critical sections in which only one process has access to a resource that is 

shared at a time. 

 Socket − Sockets constitute an internet-based communications process that enables 

procedures to interact with one another over a network. Someone can communicate both 

locally and remotely. In client-server relationships applications, ports are frequently used. 

 Remote Procedure call(RPC) − RPC is a procedure that enables a single process to call 

an operation in another. It allows procedures to call treatments in distant systems as 

though they were actually local, enabling distributed computing. In systems with 

distributed components, RPC is frequently used. 

 Signals − Asynchronous IPC signals are employed for informing an operator of an 

occurrence or interference. The Operating System (OS) sends communication through 



Principles of Operating System Page 42 
 

processes as well as between processes. Programming based on events can be 

implemented using signals. 

Advantages 

The following are many benefits of employing inter process communication (IPC) techniques for 

procedure interaction, such as − 

 Increased Modularity − IPC enables developers to divide large applications into smaller 

parts that are easier to manage. 

 Improved Performance − IPC may enhance the efficiency of applications by enabling 

handles to share information and convey it directly to one another. 

 Improved Scalability − IPC may assist enhance an implementation's adaptability by 

enabling various processes to collaborate to complete a task. 

 Improved Fault Tolerance − IPC may be employed to enhance an implementation's 

fault tolerance by allowing procedures to identify and recuperate from mistakes. 

 Increased Security − IPC may be employed to enhance security for applications by 

managing the utilization of resources that are shared. 

Disadvantages 

Although there are numerous benefits associated with employing Inter process Communication 

(IPC) techniques, that are also a number of potential drawbacks to keep in mind, such as − 

 Increased Complexity − IPC may complicate a program by needing creators to handle 

process interaction and synchronization. 

 Increased Overhead − IPC can increase usage overhead by needing extra processing 

time as well as memory assets. 

 Increased Risk of Race Condition − IPC may boost the likelihood of race 

circumstances, which occur when several programmers access a resource that is shared at 

the same period of time potentially resulting in corruption of information or other 

problems. 

 Security Risks − Given that interactions between procedures can be seized or controlled 

by unauthorized individuals, IPC can pose safety hazards. 



Principles of Operating System Page 43 
 

 System Dependency − In accordance with the system that underlies it, distinctive IPC 

techniques might come with distinct needs and constraints. 

 Debugging and Troubleshooting − Debugging and troubleshooting IPC related 

problems can prove difficult because they might involve numerous procedures with 

intricate relationships. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Principles of Operating System Page 44 
 

CHAPTER FIVE 

Memory Management Techniques 

What Is Memory Management? 

Memory management in an operating system (OS) is a critical function that involves 

coordinating and optimizing the use of computer memory to ensure efficient and secure 

execution of programs and processes. 

Memory management is critical to the computer system because the amount of main memory 

available in a computer system is very limited. At any time, many processes are competing for 

it. 

Memory management encompasses several key aspects, including memory allocation, 

protection, sharing, and swapping. 

 

Memory Management Techniques: 

It can categorize in two. 



Principles of Operating System Page 45 
 

 

Contiguous memory management schemes 

Contiguous memory management schemes are memory allocation techniques that involve 

allocating a contiguous block of memory to a process or program. In these schemes, each process 

is given a single, contiguous block of memory in which it can load and execute. 

 

Contiguous memory management schemes 



Principles of Operating System Page 46 
 

Single contiguous memory management schemes: 

The Single contiguous memory management scheme is the simplest memory management 

scheme used in the earliest generation of computer systems. In this scheme, the main memory is 

divided into two contiguous areas or partitions. The operating systems reside permanently in one 

partition, generally at the lower memory, and the user process is loaded into the other partition. 

Multiple Partitioning: 

The single Contiguous memory management scheme is inefficient as it limits computers to 

execute only one program at a time resulting in wastage in memory space and CPU time. The 

problem of inefficient CPU use can be overcome using multiprogramming that allows more than 

one program to run concurrently. To switch between two processes, the operating systems need 

to load both processes into the main memory. The operating system needs to divide the available 

main memory into multiple parts to load multiple processes into the main memory. Thus 

multiple processes can reside in the main memory simultaneously. 

1. Fixed Partitioning: 

 In fixed partitioning, the memory is divided into a fixed number of partitions or 

segments, each of a predefined size. 

 Each partition can hold one process or program. The size of the partitions is determined 

during system configuration. 

 Processes are assigned to partitions based on their size. Small processes may share a 

partition, while larger processes require entire partitions. 

 Fixed partitioning is relatively simple to implement but can lead to inefficient memory 

utilization, as there may be internal fragmentation (unused memory within a partition). 

 It is typically used in older systems where memory requirements were relatively small 

and fixed 

2. Variable Partitioning: 



Principles of Operating System Page 47 
 

 

Variable Partitioning: 

Variable partitioning is a more flexible version of contiguous memory management, where 

partitions can vary in size. 

 Memory is divided into variable-sized partitions, and processes are allocated memory 

based on their actual size, with no fixed partition sizes. 

 A process is allocated the smallest available partition that can accommodate it. 

 Variable partitioning helps reduce internal fragmentation, as processes are allocated 

memory more precisely. However, it requires dynamic memory allocation and 

management. 

 This scheme is commonly used in modern operating systems to handle varying memory 

requirements of processes efficiently. 

Non-Contiguous memory management schemes: 

Non-contiguous memory management schemes, also known as dynamic memory management 

schemes, allow processes to be allocated memory in a non-contiguous manner. These schemes 

are more flexible and efficient in terms of memory utilization compared to contiguous memory 



Principles of Operating System Page 48 
 

management schemes like fixed and variable partitioning. Here are two common non-contiguous 

memory management schemes: 

1. Paging: 

 In paging, both physical memory and the process‟s logical address space are divided into 

fixed-size blocks called “pages.” 

 Physical memory is divided into page frames, which are also of the same size as pages. 

 When a process is loaded into memory, it is divided into fixed-size blocks, or pages, and 

these pages can be scattered throughout physical memory. 

 A page table is used to map logical pages to physical page frames. Each entry in the page 

table contains the mapping information. 

 Paging eliminates external fragmentation because pages can be allocated in any available 

page frame, and internal fragmentation is minimal. 

 It allows for efficient memory allocation, and it simplifies memory management. 

However, it may incur some overhead due to the page table. 

Segmentation: 

 Segmentation divides the logical address space of a process into variable-sized segments, 

each with its own attributes. 

 Each segment represents a different part of a program or data (e.g., code segment, data 

segment). 

 Unlike paging, segments are not of uniform size, and they can grow or shrink 

dynamically. 

 A segment table is used to map logical segments to physical memory addresses. Each 

entry in the segment table contains the base address and the length of the segment. 

 Segmentation provides better memory utilization than paging for processes with varying 

memory requirements, as segments can expand or contract as needed. 

 However, it may introduce external fragmentation when segments are deallocated or 

resized. 

 



Principles of Operating System Page 49 
 

The main components in memory management are a processor and a memory unit. The 

efficiency of a system depends on how these two key components interact. 

Efficient memory management depends on two factors: 

1. Memory unit organization. Several different memory types make up the memory unit. A 

computer's memory hierarchy and organization affect data access speeds and storage size. Faster 

and smaller caches are closer to the CPU, while larger and slower memory is further away. 

 

2. Memory access. The CPU regularly accesses data stored in memory. Efficient memory access 

influences how fast a CPU completes tasks and becomes available for new tasks. Memory access 

involves working with addresses and defining access rules across memory levels. 

Memory management balances trade-offs between speed, size, and power use in a computer. 

Primary memory allows fast access but no permanent storage. On the other hand, secondary 

memory is slower but offers permanent storage.  

Why Is Memory Management Necessary? 

Main memory is an essential part of an operating system. It allows the CPU to access the data it 

needs to run processes. However, frequent read-and-write operations slow down the system. 

https://phoenixnap.com/kb/memory-hierarchy
https://phoenixnap.com/glossary/what-is-cache
https://phoenixnap.com/glossary/cpu-definition


Principles of Operating System Page 50 
 

Therefore, to improve CPU usage and computer speed, several processes reside in memory 

simultaneously. Memory management is necessary to divide memory between processes in the 

most efficient way possible.  

As a result, memory management affects the following factors: 

 Resource usage. Memory management is a crucial aspect of computer resource 

allocation. RAM is the central component, and processes use memory to run. An 

operating system decides how to divide memory between processes. Proper allocation 

ensures every process receives the necessary memory to run in parallel. 

 Performance optimization. Various memory management mechanisms have a 

significant impact on system speed and stability. The mechanisms aim to reduce memory 

access operations, which are CPU-heavy tasks. 

 Security. Memory management ensures data and process security. Isolation ensures 

processes only use the memory they were given. Memory management also enforces 

access permissions to prevent entry to restricted memory spaces. 

Operating systems utilize memory addresses to keep track of allocated memory across different 

processes. 

Memory Addresses 

Memory addresses are vital to memory management in operating systems. A memory address is 

a unique identifier for a specific memory or storage location. Addresses help find and access 

information stored in memory. 

Memory management tracks every memory location, maps addresses, and manages the memory 

address space. Different contexts require different ways to refer to memory address locations.  

The two main memory address types are explained in the sections below. Each type has a 

different role in memory management and serves a different purpose. 



Principles of Operating System Page 51 
 

Physical Addresses 

A physical address is a numerical identifier pointing to a physical memory location. The address 

represents the actual location of data in hardware, and they are crucial for low-level memory 

management. 

Hardware components like the CPU or memory controller use physical addresses. The addresses 

are unique and have fixed locations, allowing hardware to locate any data quickly. Physical 

addresses are not available to user programs. 

Virtual Addresses 

A virtual address is a program-generated address representing an abstraction of physical 

memory. Every process uses the virtual memory address space as dedicated memory.  

Virtual addresses do not match physical memory locations. Programs read and create virtual 

addresses, unaware of the physical address space. The main memory unit (MMU) maps virtual to 

physical addresses to ensure valid memory access. 

 

The virtual address space is split into segments or pages for efficient memory use. 

Static vs. Dynamic Loading 

https://phoenixnap.com/glossary/physical-memory
https://phoenixnap.com/glossary/what-is-hardware


Principles of Operating System Page 52 
 

Static and dynamic loading are two ways to allocate memory for executable programs. The 

two approaches differ in memory usage and resource consumption. The choice between the two 

depends on available memory, performance results, and resource usage. 

 Static loading allocates memory and addresses during program launch. It has predictable 

but inefficient resource usage where a program loads into memory along with all the 

necessary resources in advance. System utilities and applications use static loading to 

simplify program distribution. Executable files require compilation and are typically 

larger files. Real-time operating systems, bootloaders, and legacy systems utilize static 

loading. 

 Dynamic loading allocates memory and address resolutions during program execution, 

and a program requests resources as needed. Dynamic loading reduces memory 

consumption and enables a multi-process environment. Executable files are smaller but 

have added complexity due to memory leaks, overhead, and runtime errors. Modern 

operating systems (Linux, macOS, Windows), mobile operating systems (Android, iOS), 

and web browsers use dynamic loading. 

Static vs. Dynamic Linking 

Static and dynamic linking are two different ways to handle libraries and dependencies for 

programs. The memory management approaches are similar to static and dynamic loading: 

 Static linking allocates memory for libraries and dependencies before compilation during 

program launch. Programs are complete, and do not seek external libraries at compile 

time. 

 Dynamic linking allocates memory for libraries and dependencies as needed after 

program launch. Programs search for external libraries as the requirement appears after 

compilation. 

Static loading and linking typically unify into a memory management approach where all 

program resources are predetermined. Likewise, dynamic loading and linking create a strategy 

where programs allocate and seek resources when necessary.  

Combining different loading and linking strategies is possible to a certain extent. The mixed 

approach is complex to manage but also brings the benefits of both methods.  

https://phoenixnap.com/glossary/what-is-runtime
https://phoenixnap.com/kb/what-is-linux


Principles of Operating System Page 53 
 

Swapping 

Swapping is a memory management mechanism operating systems use to free up RAM space. 

The mechanism moves inactive processes or data between RAM and secondary storage (such as 

HDD or SSD).  

The swapping process utilizes virtual memory to address RAM space size limits, making it a 

crucial memory management technique in operating systems. The technique uses a section from 

a computer's secondary storage to create swap memory as a partition or file. 

Swap space enables exceeding RAM space by dividing data into fixed-size blocks called pages. 

The paging mechanism tracks which pages are in RAM and which are swapped out through page 

faults.  

Excessive swapping leads to performance degradation due to secondary memory being slower. 

Different swapping strategies and swappiness values minimize page faults while ensuring that 

only essential data is in RAM.  

Fragmentation 

Fragmentation is a consequence that appears when attempting to divide memory into partitions. 

An operating system takes a part of the main memory, leaving the rest available for processes 

which divides further into smaller partitions. Partitioning does not utilize virtual memory. 

There are two approaches to partitioning remaining memory: into fixed or dynamic partitions. 

Both approaches result in different fragmentation types: 

 Internal. When remaining memory is divided into equal-sized partitions, programs larger 

than the partition size require overlaying, while smaller programs take up more space 

than needed. The unallocated space creates internal fragmentation. 

 External. Dividing the remaining memory dynamically results in partitions with variable 

sizes and lengths. A process receives only the memory it requests. The space is freed 

when it is completed. Over time, unused memory gaps appear, resulting in external 

fragmentation. 

https://phoenixnap.com/glossary/what-is-hdd
https://phoenixnap.com/glossary/what-is-ssd
https://phoenixnap.com/glossary/virtual-memory-definition
https://phoenixnap.com/kb/swap-memory
https://phoenixnap.com/glossary/swap-partition-vs-swap-file
https://phoenixnap.com/kb/paging
https://phoenixnap.com/kb/swappiness
https://phoenixnap.com/glossary/what-is-fragmentation
https://phoenixnap.com/glossary/internal-fragmentation
https://phoenixnap.com/glossary/external-fragmentation
https://phoenixnap.com/glossary/external-fragmentation


Principles of Operating System Page 54 
 

 

Internal fragmentation requires design changes. The typical resolution is through the paging and 

segmentation mechanism.  

External fragmentation requires the operating system to periodically defragment and free up 

unused space. 

 

 

 

 

 

 

 

 

 

https://phoenixnap.com/glossary/what-is-defragmentation


Principles of Operating System Page 55 
 

CHAPTER SIX 

I/O Management 

One of the important jobs of an Operating System is to manage various I/O devices including 

mouse, keyboards, touch pad, disk drives, display adapters, USB devices, Bit-mapped screen, 

LED, Analog-to-digital converter, On/off switch, network connections, audio I/O, printers etc. 

An I/O system is required to take an application I/O request and send it to the physical device, 

then take whatever response comes back from the device and send it to the application. I/O 

devices can be divided into two categories − 

 Block devices − A block device is one with which the driver communicates by sending 

entire blocks of data. For example, Hard disks, USB cameras, Disk-On-Key etc. 

 Character devices − A character device is one with which the driver communicates by 

sending and receiving single characters (bytes, octets). For example, serial ports, parallel 

ports, sounds cards etc 

Device Controllers 

Device drivers are software modules that can be plugged into an OS to handle a particular 

device. Operating System takes help from device drivers to handle all I/O devices. 

The Device Controller works like an interface between a device and a device driver. I/O units 

(Keyboard, mouse, printer, etc.) typically consist of a mechanical component and an electronic 

component where electronic component is called the device controller. 

There is always a device controller and a device driver for each device to communicate with the 

Operating Systems. A device controller may be able to handle multiple devices. As an interface 

its main task is to convert serial bit stream to block of bytes, perform error correction as 

necessary. 

Any device connected to the computer is connected by a plug and socket, and the socket is 

connected to a device controller. Following is a model for connecting the CPU, memory, 

controllers, and I/O devices where CPU and device controllers all use a common bus for 

communication. 



Principles of Operating System Page 56 
 

 

Synchronous vs asynchronous I/O 

 Synchronous I/O − In this scheme CPU execution waits while I/O proceeds 

 Asynchronous I/O − I/O proceeds concurrently with CPU execution 

Communication to I/O Devices 

The CPU must have a way to pass information to and from an I/O device. There are three 

approaches available to communicate with the CPU and Device. 

 Special Instruction I/O 

 Memory-mapped I/O 

 Direct memory access (DMA) 

Special Instruction I/O 

This uses CPU instructions that are specifically made for controlling I/O devices. These 

instructions typically allow data to be sent to an I/O device or read from an I/O device. 

Memory-mapped I/O 

When using memory-mapped I/O, the same address space is shared by memory and I/O devices. 

The device is connected directly to certain main memory locations so that I/O device can transfer 

block of data to/from memory without going through CPU. 



Principles of Operating System Page 57 
 

 

While using memory mapped IO, OS allocates buffer in memory and informs I/O device to use 

that buffer to send data to the CPU. I/O device operates asynchronously with CPU, interrupts 

CPU when finished. 

The advantage to this method is that every instruction which can access memory can be used to 

manipulate an I/O device. Memory mapped IO is used for most high-speed I/O devices like 

disks, communication interfaces. 

Direct Memory Access (DMA) 

Slow devices like keyboards will generate an interrupt to the main CPU after each byte is 

transferred. If a fast device such as a disk generated an interrupt for each byte, the operating 

system would spend most of its time handling these interrupts. So a typical computer uses direct 

memory access (DMA) hardware to reduce this overhead. 

Direct Memory Access (DMA) means CPU grants I/O module authority to read from or write to 

memory without involvement. DMA module itself controls exchange of data between main 

memory and the I/O device. CPU is only involved at the beginning and end of the transfer and 

interrupted only after entire block has been transferred. 

Direct Memory Access needs a special hardware called DMA controller (DMAC) that manages 

the data transfers and arbitrates access to the system bus. The controllers are programmed with 

source and destination pointers (where to read/write the data), counters to track the number of 



Principles of Operating System Page 58 
 

transferred bytes, and settings, which includes I/O and memory types, interrupts and states for 

the CPU cycles. 

 

The operating system uses the DMA hardware as follows − 

Step Description 

1 Device driver is instructed to transfer disk data to a buffer address X. 

2 Device driver then instruct disk controller to transfer data to buffer. 

3 Disk controller starts DMA transfer. 

4 Disk controller sends each byte to DMA controller. 

5 
DMA controller transfers bytes to buffer, increases the memory address, decreases the 

counter C until C becomes zero. 



Principles of Operating System Page 59 
 

6 When C becomes zero, DMA interrupts CPU to signal transfer completion. 

Polling vs Interrupts I/O 

A computer must have a way of detecting the arrival of any type of input. There are two ways 

that this can happen, known as polling and interrupts. Both of these techniques allow the 

processor to deal with events that can happen at any time and that are not related to the process it 

is currently running. 

Polling I/O 

Polling is the simplest way for an I/O device to communicate with the processor. The process of 

periodically checking status of the device to see if it is time for the next I/O operation, is called 

polling. The I/O device simply puts the information in a Status register, and the processor must 

come and get the information. 

Most of the time, devices will not require attention and when one does it will have to wait until it 

is next interrogated by the polling program. This is an inefficient method and much of the 

processors time is wasted on unnecessary polls. 

Compare this method to a teacher continually asking every student in a class, one after another, if 

they need help. Obviously the more efficient method would be for a student to inform the teacher 

whenever they require assistance. 

Interrupts I/O 

An alternative scheme for dealing with I/O is the interrupt-driven method. An interrupt is a 

signal to the microprocessor from a device that requires attention. 

A device controller puts an interrupt signal on the bus when it needs CPU‟s attention when CPU 

receives an interrupt, It saves its current state and invokes the appropriate interrupt handler using 

the interrupt vector (addresses of OS routines to handle various events). When the interrupting 

device has been dealt with, the CPU continues with its original task as if it had never been 

interrupted. 



Principles of Operating System Page 60 
 

CHAPTER SEVEN 

Deadlock Avoidance 

What is Deadlock? 

Deadlock is when two or more processes wait for each other to release a resource. This creates a 

standstill, and the system becomes unresponsive until one of the processes is killed. 

Let‟s understand with a real-life analogy. 

1. Consider a very narrow one-way road where two persons, A and B, coming from 

opposite directions, have blocked each other‟s passage. Consider road as a resource. And 

the other people moving on the road can be taken as processes. As the path is very 

narrow, none of these two-person can proceed further and is blocked. Now they are in a 

deadlock state. 

2. John and Amy are brother-sister. They both are in a deadlock state as Amy wants a laptop 

which John is having and is not in the mood to give it to his sister. And Amy has a TV 

remote which John wants, But Amy is not giving it to him. 

 

Also read: What is Operating Systems (OS) – Types, Functions, and Examples 

Necessary Conditions for Deadlock 

https://www.shiksha.com/online-courses/what-is-operating-system-st617


Principles of Operating System Page 61 
 

These four conditions must be met for a deadlock to happen in an operating system. 

1. Mutual Exclusion 

In this, two or more processes must compete for the same resources. There must be some 

resources that can only be used one process at a time. This means the resource is non-sharable. 

This could be a physical resource like a printer or an abstract concept like a lock on a shared 

data structure. 

2. Hold and Wait 

Hold and wait is when a process is holding a resource and waiting to acquire another resource 

that it needs but cannot proceed because another process is keeping the first resource. Each of 

these processes must have a hold on at least one of the resources it‟s requesting. If one process 

doesn‟t have a hold on any of the resources, it can‟t wait and will give up immediately.  

3. No Preemption 

Preemption means temporarily interrupting a task or process to execute another task or process. 

Preemption can occur due to an external event or internally within the system. If we take away 

the resource from the process that is causing deadlock, we can avoid deadlock. But is it a good 

approach? The answer is NO because that will lead to an inconsistent state. For example, if we 

take away memory from any process(whose data was in the process of getting stored) and assign 

it to some other process. Then will lead to an inconsistent state. 

4. Circular Wait 

The circular wait is when two processes wait for each other to release a resource they are 

holding, creating a deadlock. There must be a cycle in the graph below. As you can see, process 

1 is holding on to a resource R1 that process 2 in the cycle is waiting for. This is an example of a 

circular wait.To better understand let‟s understand with another example. For example, Process 

A might be holding on to Resource X while waiting for Resource Y, while Process B is holding 

on to Resource Y while waiting for Resource Z, and so on around the cycle. 

 

https://www.shiksha.com/online-courses/what-is-data-structures-and-algorithms-st653-tg1263


Principles of Operating System Page 62 
 

What are the Consequences of a Deadlock? 

When a deadlock occurs, it can cause your computer to freeze up, making it difficult to even 

restart. This can cause you to lose important work or data and in some cases, may even damage 

your computer. 

To prevent a deadlock state, it‟s important to be aware of what causes deadlocks and how to 

avoid them. 

  Methods For Handling Deadlocks 

1. Deadlock avoidance 

Deadlock avoidance is the process of taking steps to prevent deadlock from occurring. Operating 

system uses the deadlock Avoidance method to ensure the system is in a safe state(when the 

system can allocate resources and can avoid being in a deadlock state). We have a Deadlock 

avoidance algorithm-Banker’s algorithm for this. When a new process is to be executed, it 

requires some resources. So banker‟s algorithm needs to know 

 How many resources the process could request 

 Which processes hold many resources. 

 How many resources the system has. 

And accordingly, resources are being assigned if available resources are more than requested to 

avoid deadlock. Tell the operating system about the maximum number of resources a process can 

request to complete its execution. The deadlock avoidance graph(shown in fig-2) assesses the 

resource-allocation state to check if a circular wait situation is not occurring. 

If a deadlock does occur, it can sometimes be resolved by terminating one of the processes 

involved. However, this can cause data loss or corruption, so it‟s always preferable to try and 

prevent the deadlock from happening in the first place. 

Bankers algorithm Pseudocode: 

1. In starting all the processes are to be executed. Define two data structure finish and work: 



Principles of Operating System Page 63 
 

Finish[n]=False. 

Work=Available 

Where n is a number of processes to be executed. 

2. Find the process for which Finish[i]=False 

And Need <=Work(This means a request is valid as the number of requested resources of each 

resource type is less than the available resources, In case no such process is there then go to 

step 

3. Work=Work+Allocation 

Finish[i]=True 

Go to step 2 to find other processes  

Any process says process „i‟ finishes its execution. So that means the resources allocated to it 

previously, get free. So these resources are added to Work and Finish(i) of the process is set as 

true. 

4. If Finish[i]=True for n processes then the system is in a safe state(If all the processes are 

executed in some sequence). Otherwise, it is in an unsafe state 

Also read: Real-time operating system 

Must explore: Distributed operating system  

2. Deadlock Detection 

Detecting deadlocks is one of the most important steps in preventing them. A deadlock can 

happen anytime when two or more processes are trying to acquire a resource, and each process is 

waiting for other processes to release the resource. 

The deadlock can be detected in the resource-allocation graph as shown in fig below. 

https://www.shiksha.com/online-courses/articles/real-time-operating-system/
https://www.shiksha.com/online-courses/articles/distributed-operating-system/


Principles of Operating System Page 64 
 

 

This graph checks if there is a cycle in the Resource Allocation Graph and each resource in the 

cycle provides only one instance, If there is a cycle in this graph then the processes will be in a 

deadlock state. 

So always remember detecting deadlocks is one of the most important steps in preventing them.  

Also read: Operating System Online Courses & Certifications 

3. Deadlock Prevention  

The best way to prevent deadlocks is by understanding how they form in the first place. 

Deadlock can be prevented by eliminating the necessary conditions for deadlock(explained 

above). 

Some ways of prevention are as follows 

1. Preempting resources: Take the resources from the process and assign them to other 

processes. 

2. Rollback: When the process is taken away from the process, roll back and restart it. 

3. Aborting: Aborting the deadlocked processes. 

4. Sharable resource: If the resource is sharable, all processes will get all resources, and a 

deadlock situation won‟t come. 

 

https://www.shiksha.com/online-courses/operating-system-courses-certification-training-st617


Principles of Operating System Page 65 
 

Example of Deadlock  

Let‟s understand what deadlock is in the operating system better with this example. Let‟s assume 

that Process 1 and Process 2 are two processes. In the same vein, Resource 1 and Resource 2 are 

two resources. Supposedly,  

 Process 1 is assigned to “Resource 1” but ends up waiting for “Resource 2”. 

 Process 2 needs “Resource 2” and waits for “Resource 1”. 

 

Subsequently, neither Process 1 nor Process 2 gets executed because the resources needed by 

them are held up. So, this was a deadlock example resulting in a potential deadlock in the 

operating system. 

Necessary Conditions for Deadlock in OS 

It isn‟t necessary that a deadlock will happen whenever more than one process, along with more 

than one resource, is involved. This is because a deadlock is earmarked by four conditions that 

are to be fulfilled anyhow. These include 



Principles of Operating System Page 66 
 

1. Mutual Exclusion 

Mutually exclusive means that for every process, there is a designated resource that cannot be 

shared. Henceforth, no two processes can ask for the same resource. 

2. Hold and wait 

As the name suggests, this deadlock condition in OS requires a process to wait for an occupied 

resource. This condition cannot be truer. Deadlock example 

3. No preemption 

Only one process can be scheduled at a point in time. So, it is said that no two processes can be 

executed simultaneously. This implies that only when a process is completed, then only the 

allocated or occupied resource will be duly released. 

4. Circular wait 

Every set of processes waits in a cyclic manner. This keeps them waiting forever, and they never 

get executed. As a result, deadlocks are called “circular wait” since they get a process stuck in a 

circular fashion. Every set of processes waits in a cyclic manner. This keeps them waiting 

forever, and they never get executed. As a result, deadlocks are also called “circular wait” since 

they get a process stuck in a circular fashion. 

So, these were the four conditions of deadlock. 

Methods for Handling Deadlock in OS 

Are you brainstorming about the ways of handling a deadlock in an operating system? Well, it‟s 

time to address your significant concern about handling deadlocks. These include 

1. Deadlock Detection and Recovery 

This method involves identifying the situation of deadlock and following some ways to recover 

your system from a deadlock. A user can simply abort all the processes that can lead to further 

potential deadlocks. It is recommended to abort one process at a time rather than ending all the 

processes simultaneously. Keep aborting the processes till the system returns back to normalcy 



Principles of Operating System Page 67 
 

from the situation of deadlock. Another way out could be of freeing the resources from allocation 

until the deadlock perishes. This is called “resource preemption”. 

2. Deadlock Prevention 

As the name goes, if a user prevents any one of the four conditions for a deadlock from taking 

place, a deadlock will be prevented.   

3. Deadlock Avoidance 

Whenever a process asks for a resource to be allocated, an algorithm is exercised to examine 

whether this resource allocation is safe for the system or not. If it isn‟t safe, then the request is 

denied. This very algorithm is known as the “deadlock avoidance” method.  

4. Deadlock Ignorance 

UNIX, Windows, and some other operating systems often are oblivious to deadlocks and ignore 

the situation of a deadlock, whenever it arises. This approach is termed the “Ostrich algorithm”. 

So, whenever a deadlock occurs, you can simply reboot the PC, and the deadlock will get 

resolved in no time. 

Difference Between Starvation and Deadlock in the Operating System 

Some users often confuse deadlocks for starvation in OS. However, the two are as different as 

day and night. Very commonly asked questions “What is starvation in OS” and “what is a 

deadlock in ” are also answered below. The table below lucidly traces the difference between 

starvation and deadlock: 

 

 

 

 



Principles of Operating System Page 68 
 

Basis Starvation Deadlock 

Definition It is a process wherein resource-

allocation is never done to low-priority 

resources and subsequently, they are 

never executed. 

It is a situation where more than one 

process taking place in a system is 

prevented from getting executed 

because no resource is allocated to it. 

Resource 

allocation 

 

Here, resources are allocated to high-

priority processes only. 

Resource allocation is not done. 

Ways to handle 

 

A way to handle starvation is via 

aging. 

 

By avoiding any of the four necessary 

conditions for deadlock.   

 

Execution 
Because of resource allocation, only 

high-priority resources are executed. 

No process ever gets executed. 

Other names Starvation in OS is also termed as 

“lived lock”. 
Also termed as “circular wait”. 

Deadlock Starvation 

In this, two or more processes are 

each waiting for the other to release 

a resource, and neither process is 

able to continue. 

In this, a process is unable to obtain the resources it needs 

to continue running. 

Different processes are unable to 

proceed because they are each 

waiting for the other to do 

something. 

A process is unable to proceed due to the unavailability of 

that resource. 

Deadlock is also called Circular Starvation is also called lived lock. 



Principles of Operating System Page 69 
 

Basis Starvation Deadlock 

wait. 

Avoiding the necessary conditions 

for deadlock can be prevented. 
Starvation can be easily prevented by Aging. 

Advantages of the Deadlock Method 

Since we are well-versed with what is a deadlock in OS now, let‟s get through the following 

advantages of it: 

 Perfect for a single task: The deadlock method is suitable for performing single tasks.  

 No preemptions: There is no need to block a process from accessing that resource and 

preempting it to some other process.  

 Lucrative method: If your resource can get stored as well as restored quickly, then this 

is the method for you.  

 No computations required: Sincere thanks to all the problem-solving done in the system 

design, you can now bid adieu to run-time algorithmic computations. Wondering the role 

system design has to play in this? You can learn all about it in this Web Designing and 

Development course online.  

Disadvantages of the Deadlock Method 

While the pros of the deadlock method exist, so do the cons:  

 Late initiation: One of the biggest flaws of the deadlock method is that it lags in process 

initiation.  

 Forestall losses: There is no iota of doubt that the deadlock method has inherent 

forestalled losses.  

 Preemptions are encountered frequently: This method cannot be deemed good since it 

results in taking away the resource from the process making the output fetched up till 

now totally inconsistent.  

https://www.knowledgehut.com/web-development-courses
https://www.knowledgehut.com/web-development-courses


Principles of Operating System Page 70 
 

 No piecemeal resources: The deadlock method doesn‟t approve any request asking for 

gradational resources.  

 Unawareness about future needs: Usually, processes ain‟t aware of their future 

resource requirements.  


