THOMAS ADEWUMI UNIVERSITY OKO			
COURSE OUTLINE			
Faculty	Computing and applied science		
Department	Biological Sciences		
Course title	IMMUNOLOGY AND		
	IMMUNOCHEMISTRY		
Year of study	4		
Course code	MCB 403		
Credit hours	3		
Contact hours	45		
Mode of delivery	CLASSROOM LECTURES		
Mode of assessment		WEIGHT%	
Continuous assessment		30%	
Final examination		70%	
Total		100%	
Course lecturers and	MRS F.J. OLAITAN-LECTURER		
Instructors			
Course description	"Immunology and Immunchemistry" is a		
	comprehensive course that delves into	o the	
	intricacies of the immune system and	its essential	
	role in safeguarding the body against	infections	
	and diseases. Through a combination of historical		
	context, fundamental concepts, and cutting-edge research, students will explore the fascinating		
	world of immunity. The course cover	s topics	
	ranging from immune cells and their	functions to	
	the generation of immune responses,		
	immunological disorders, tumor imm	unity, and	
	diagnostic techniques in immunology.		
Course objectives	This course will facilitate the understanding of:		
	1. Understand the historical evolution and		
	significance of immunology.		
	2. Grasp the concept of innate and adaptive		
	immunity and their interplay.		
	3. Recognize the contributions of key scientists to		
	the field of immunology.		
	4. Identify immune cells, organs, antigens, and		
	antibodies and their roles.		
	5. Explain the importance of the Major		
	Histocompatibility Complex (MHC) and the		
	Complement System.		

	6. Describe the mechanisms of immune response	
	generation and immunological memory.	
	7. Analyze the complexities of immunological	
	disorders and tumor immunity.	
	8. Gain practical knowledge of immunological	
	techniques and their applications in disease	
	diagnosis.	
Learning outcomes	At the end of the course, students will be able to :	
	1. Explain the history and development in	
	Immunology	
	2. Describe the concepts of Innate and Adaptive	
	Immunity	
	3. Discuss the contributions of pioneers in	
	Immunology	
	4. Describe the Functions and Significance of	
	Immune Cells and Organs	
	5. Explain the immunoglobulins and innate	
	defense systems	
	6. Describe the Major Histocompatibility	
	Complex (MHC) and Immune Recognition	
	7. Explain the Complement System present in the	
	body	
	8. Highlight how Immune Responses and	
	Immunological Memory are generated	
	9. Describe at least three (3) Immunological	
	Disorders: Autoimmune Diseases,	
	Hypersensitivity, Immunodeficiency	
	10. Describe Tumor Immunity	
	11. Describe Immunological Techniques	
Teaching and learning	The class will be taught for three hours a week.	
Detailed course content	Introduction to Immunology and Historical	
	Background. Innate and Adaptive Immunity:	
	Concepts and Interactions. Contributions of	
	Pioneers in Immunology. Immune Cells and	
	Organs: Functions and Significance. Antigens and	
	Antibodies: Structure, Function, and Diversity.	
	Major Histocompatibility Complex (MHC) and	
	Immune Recognition. Complement System:	
	Activation and Immune Response Enhancement.	
	Generation of Immune Responses and	
	Immunological Memory	
	Immunological Disorders: Autoimmune Diseases,	
	Hypersensitivity, Immunodeficiency	

	Escape Mechanisms. Immunological Techniques:
	Serological Methods, Flow Cytometry, Diagnostic
	Application
	Course content sequencing
Weeks	
Week 1	Introduction to Immunology and Historical
	Background
Week 2	Innate and Adaptive Immunity: Concepts and
	Interactions
Week 3	Contributions of Pioneers in Immunology
Week 4	Immune Cells and Organs: Functions and
	Significance
Week 5	Antigens and Antibodies: Structure, Function, and
	Diversity
Week 6	Major Histocompatibility Complex (MHC) and
	Immune Recognition
Week 7	Complement System: Activation and Immune
	Response Enhancement
Week 8	Generation of Immune Responses and
	Immunological Memory
Week 9	Immunological Disorders: Autoimmune Diseases,
	Hypersensitivity, Immunodeficiency
Week 10	Tumor Immunity: Immune Surveillance and
	Escape Mechanisms
Week 11	Immunological Techniques: Serological Methods,
	Flow Cytometry, Diagnostic Application
Week 12	Revision
Recommended read	ling material

1. Joanne Willey and Kathleen Sandman and Dorothy Wood (2020). Prescott's Microbiology. 11th Edition.

2. David Greenwood, Mike Barer, Richard Slack (2012) Medical Microbiology. A Guide to Microbial Infections: Pathogenesis, Immunity, Laboratory Diagnosis and Control Eighteenth Edition, Churchhill livingstone, Elsevier.

Course code: MCB 403

Course title: Immunology and Immunochemistry

Preamble: "Immunology and Immunchemistry" is a comprehensive course that delves into the intricacies of the immune system and its essential role in safeguarding the body against

infections and diseases. Through a combination of historical context, fundamental concepts, and cutting-edge research, students will explore the fascinating world of immunity. The course covers topics ranging from immune cells and their functions to the generation of immune responses, immunological disorders, tumor immunity, and diagnostic techniques in immunology.

A. Specific course objectives/learning outcomes.

The course will enable the understanding of the following:

1. Understand the historical evolution and significance of immunology.

2. Grasp the concept of innate and adaptive immunity and their interplay.

3. Recognize the contributions of key scientists to the field of immunology.

4. Identify immune cells, organs, antigens, and antibodies and their roles.

5. Explain the importance of the Major Histocompatibility Complex (MHC) and the Complement System.

6. Describe the mechanisms of immune response generation and immunological memory.

7. Analyze the complexities of immunological disorders and tumor immunity.

8. Gain practical knowledge of immunological techniques and their applications in disease diagnosis.

B. Learning activities/Course delivery methods

C. Lectures: detailed content of course are taught in class

Course content: Introduction to Immunology and Historical Background. Innate and Adaptive Immunity: Concepts and Interactions. Contributions of Pioneers in Immunology. Immune Cells and Organs: Functions and Significance. Antigens and Antibodies: Structure, Function, and Diversity. Major Histocompatibility Complex (MHC) and Immune Recognition. Complement System: Activation and Immune Response Enhancement. Generation of Immune Responses and Immunological Memory. Immunological Disorders: Autoimmune Diseases, Hypersensitivity, Immunoleficiency. Tumor Immunity: Immune Surveillance and Escape Mechanisms. Immunological Techniques: Serological Methods, Flow Cytometry, Diagnostic Application