THOMAS ADEWUMI UNIVERSITY OKO			
COURSE OUTLINE			
Faculty	COMPUTING AND APPLIED SCIE	ENCES	
Department	BIOLOGICAL SCIENCES		
Course title	MICROBIAL GENETICS AND		
	MOLECULAR BIOLOGY		
Year of study	3		
Course code	MCB 302		
Credit hours	3		
Contact hours	45		
Mode of delivery	CLASSROOM LECTURES		
	LABORATORY PRACTICAL SESS	IONS	
Mode of assessment		WEIGHT%	
Continuous assessment		30%	
Final examination		70%	
Total		100%	
Course lecturers and	Dr. Adekemi T. Dahunsi-LECTURE	R	
Instructors			
Course description	Microbial Genetics and Molecular Biology is a		
	course that provide students with an understanding		
	of the principles and mechanisms underlying the		
	genetics and molecular biology of		
	microorganisms. This course delves i	nto the	
	intricate world of microorganisms, exploring how		
	their genetic material influences their	behavior,	
	adaptation, and evolution, while also emphasizing		
	the essential role they play in various	, •	
Course chiectives	biotechnological and medical applica	tions.	
Course objectives	1 Structure and group ortige of D		
	2 Principles of genetic analysis	NA and KNA	
	3 Plasmids and transposable ge	netic	
	elements.	liette	
	4. Mutagenesis and DNA repairs	s. Mechanism	
	and nature of mutation, induc	tion, isolation	
	and characterization of mutan	its.	
	5. Genetic exchanges in prokary	votes	
	including transformation, tran	sduction,	
	phage conversion and conjugation	ation.	

	6. Genetic coding and expression of genetic
	7 Recombinant DNA technology and
	methods in gene cloning. Recent
	techniques in microbial genetics:
	Polymerase chain reaction (PCR)
	8. Bioinformatics i.e., the organization,
	storage, retrieval and analysis of biological
	data.
	9. Applications of genetic engineering
Learning outcomes	By the end of the course, students will be able to:
	1. Describe the basic principles of microbial
	genetics encompassing DNA replication,
	gene expression, and mutation.
	2. Explain the mechanisms of gene regulation
	3. Describe horizontal gene transfer
	mechanisms,
	4. Understand the roles of plasmids and other
	mobile genetic elements.
	5. Explain genetic coding and expression of
	genetic expression
	6. Understand recombinant DNA technology
	7 Describe techniques used in microbial
	genetics
	8. Understand bioinformatics as an important
	tool in molecular biology
	9. Appreciate the use of microorganisms in
	biotechnology, spanning medical and
	industrial use.
leaching and learning	The class will meet for three hours a week. It will
	be a combination of teachings and practical
Detailed course content	Structure and properties of DNA and PNA
Detailed course content	Principles of genetic analysis Plasmids and
	transposable genetic elements. Mutagenesis and
	DNA repairs. Mechanism and nature of mutation.
	induction, isolation and characterization of
	mutants. Genetic exchanges in prokaryotes
	including transformation, transduction, phage
	conversion and conjugation. Genetic coding and
	expression of genetic information. Recombinant
	DNA technology and methods in gene cloning.

	Recent techniques in microbial genetics:
	Polymerase chain reaction (PCR). Bioinformatics
	i.e., the organization, storage, retrieval and
	analysis of biological data. Applications of genetic
	engineering
Course content sequencing	
Weeks	
Week 1	Structure and properties of DNA and RNA.
	Principles of genetic analysis.
Week 2	Plasmids and transposable genetic elements.
	Mutagenesis and DNA repairs.
Week 3	Mechanism and nature of mutation, induction,
	isolation and characterization of mutants.
	Continuous Assessment 1
Week 4	Genetic exchanges in prokaryotes including
	transformation, transduction, phage conversion
	and conjugation
Week 5	Genetic coding and expression of genetic
	information.
Week 6	Recent techniques in microbial genetics:
	Polymerase chain reaction (PCR).
Week 7 - 8	Bioinformatics i.e., the organization, storage,
	retrieval and analysis of biological data.
Week 9	Continuous Assessment 2
Week 10 – 11	Applications of genetic engineering
Week 12	Revision
Recommended reading material	·
1 Larry Snyder Josenh E. Pete	ers Tina M Henkin and Wendy Champness

1. Larry Snyder, Joseph E. Peters, Tina M. Henkin, and Wendy Champness (2013). Molecular Genetics of Bacteria. ASM Press.

2. Joanne Willey and Kathleen Sandman and Dorothy Wood (2020). Prescott's Microbiology. McGraw-Hill Higher Education

3. Michael T. Madigan, Kelly S. Bender, Daniel H. Buckley W. Matthew Sattley and David A. Stahl (2019). Brock Biology of Microorganisms. Pearson Educational Limited

Course code: MCB 302

Course title: MICROBIAL GENETICS AND MOLECULAR BIOLOGY

Preamble: This course is going to teach the genetic intricacies of microorganisms, understanding how their DNA shapes behavior, adaptation, and evolution. Explore techniques used in this field, their biotechnological and medical applications. Uncover the mysteries of microbial genetics and molecular biology in the journey through the course.

Specific course objectives/learning outcomes.

The course will enable the understanding of the following:

This course will make it possible to understand

- 1. Structure and properties of DNA and RNA
- 2. Principles of genetic analysis
- 3. Plasmids and transposable genetic elements.
- 4. Mutagenesis and DNA repairs. Mechanism and nature of mutation, induction, isolation and characterization of mutants.
- 5. Genetic exchanges in prokaryotes including transformation, transduction, phage conversion and conjugation.
- 6. Genetic coding and expression of genetic information.
- 7. Recombinant DNA technology and methods in gene cloning. Recent techniques in microbial genetics: Polymerase chain reaction (PCR)
- 8. Bioinformatics i.e., the organization, storage, retrieval and analysis of biological data.
- 9. Applications of genetic engineering

Learning activities/Course delivery methods

- 1. Lectures: detailed content of course are taught in class
- 2. Laboratory Sessions: the practical application of the course is demonstrated in the laboratory

Course content: Structure and properties of DNA and RNA. Principles of genetic analysis. Plasmids and transposable genetic elements. Mutagenesis and DNA repairs. Mechanism and nature of mutation, induction, isolation and characterization of mutants. Genetic exchanges in prokaryotes including transformation, transduction, phage conversion and conjugation. Genetic coding and expression of genetic information. Recombinant DNA technology and methods in gene cloning. Recent techniques in microbial genetics: Polymerase chain reaction (PCR). Bioinformatics i.e., the organization, storage, retrieval and analysis of biological data. Applications of genetic engineering.