THOMAS ADEWUMI UNIVERSITY, OKO-IRESE				
Faculty	Computing and Applied Sciences			
Department	Mathematical and Computing Science			
Program	Computer Science			
Course Code	CSC 419			
Course Title	OPTIMIZATION TECHNIQUES			
Study Year	4			
Credit Hours	3			
Contact Hours	45			
Pre-requisite				
Status	Elective			
Semester	First			
Mode of	Lecture, Assessment and Practical			
Assessment				
Mode of Delivery	Classroom Lectures			
	Laboratory Practical Sessions			
Assignment	10%			
practical				
Test	20%			
Examination	70%			
Total	100%			
Course Lecturer				
and Instructor				
Course	Optimization Techniques" is a course designed to equip students with the			
Description	knowledge and skills to solve a wide range of real-world problems by finding			
	optimal solutions. It covers mathematical modeling, algorithmic approaches,			
	and practical applications of optimization in various fields, including			
	engineering, economics, logistics, and computer science.			
Course	To teach the students:			
Objectives	Develop a clear understanding of antimization fundamentals			
	Develop a clear understanding of optimization fundamentals,			
	including decision variables, objective functions, constraints, and			
	feasible regions.			
	Learn to formulate and solve linear programming problems using			
	techniques like the simplex method.			
	☐ Apply linear programming to real-world problems such as resource			
Loorning	allocation and production planning. At the end of this course, students will be able to:			
Learning Outcome	At the end of this course, students will be able to:			
Outcome	Understands the concepts of optimization			
	<u> </u>			
	Learn to formulate and solve linear programming Apply linear programming to solve real world problems			
	Apply linear programming to solve real-world problems			

Detailed course contents	problems, constrained nonlinear optimization problems, multi objective optimization problems, evolutionary optimization algorithms, adaptive genetic algorithm, Bayesian statistics as optimization technique, optimization methods for inverse problems, solving optimization problems using MATLAB.		
Course Contents Sequencing			
***		Allocated	
Weeks	Detailed Course Outline	Time	
WEEK 1	 Understanding the basic concepts of optimization, objectives, constraints, and decision variables. Differentiating between linear, nonlinear, and integer optimization problems 	3 Hours	
WEEK 2	 Linear Programming (LP): Formulating and solving linear optimization problems using techniques like the simplex method. Applications in resource allocation, production planning, and transportation. 	3 Hours	
WEEK 3	Nonlinear Programming (NLP):	3 Hours	
	 Techniques for solving nonlinear optimization problems, including gradient-based methods. Applications in engineering design and economics. 		
WEEK 4,5	 Integer Programming (IP) and Mixed-Integer Programming (MIP): Solving problems with discrete decision variables. Branch-and-bound, branch-and-cut, and cutting-plane 	6 Hours	
WILDY C. F.	methods. C.A Test		
WEEK 6, 7	 Principles of dynamic programming for solving problems with sequential decision-making. Applications in finance, project scheduling, and resource management. 	6 Hours	

WEEK 8,9	Metaheuristic Algorithms:	6 Hours
	 Introduction to optimization algorithms that do not guarantee an optimal solution but are efficient in finding near-optimal solutions. Genetic algorithms, simulated annealing, and particle swarm optimization 	
	C.A Test	
WEEK 10	Constraint Programming:	3 Hours
	 Techniques for solving combinatorial optimization problems with constraints. Applications in scheduling, resource allocation, and configuration. 	
WEEK 11	Multi-Objective Optimization:	3 Hours
	 Methods for handling problems with multiple conflicting objectives. Pareto optimization and trade-off analysis 	
WEEK 12	Global Optimization:	3 Hours
	 Strategies for finding global optima in nonlinear optimization problems. Interval analysis and stochastic search methods. Optimization Software Tools: Practical use of optimization software such as MATLAB, Gurobi, CPLEX, and open-source libraries. 	
WEEK 13	REVISION	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TEL VIDIOIT	

READING LIST:

- 1. Introduction to Operations Research by Frederick S. Hillier and Gerald J. Lieberman:
- 2. Convex Optimization by Stephen Boyd and Lieven Vandenberghe:
- 3. Nonlinear Programming: Theory and Algorithms by Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty:
- 4. Integer and Combinatorial Optimization by George L. Nemhauser and Laurence A. Wolsey:

- 5. Optimization Methods in Finance by Gerard Cornuejols, Reha Tütüncü, and Robert J. Vanderbei:
- 6. Practical Optimization by Philip E. Gill, Walter Murray, and Margaret H. Wright:
- 7. Optimization by Vector Space Methods by David G. Luenberger:
- 8. Numerical Optimization by Jorge Nocedal and Stephen J. Wright:
- 9. Applied Optimization with MATLAB Programming by P. Venkataraman:
- 10. Optimization Methods and Applications by U. Dinesh KumarW. Creswell and J. David Creswell