| | THOMAS ADEWUMI UNIVERSITY, OKO-IRESE | | | |--|--|--|--| | Faculty | Computing and Applied Sciences | | | | Department | Mathematical and Computing Science | | | | Program | Computer Science | | | | Course Code | CSC 415 | | | | Course Title | FORMAL MODELS OF COMPUTATION | | | | Study Year | 4 | | | | Credit Hours | 3 | | | | Contact Hours | 36 | | | | Pre-requisite | | | | | Status | Elective | | | | Semester | First | | | | Mode of | Lecture, Assessment and Practical | | | | Assessment | | | | | Mode of Delivery | Classroom Lectures | | | | , and the second | Laboratory Practical Sessions | | | | Assignment | 10% | | | | practical | | | | | Test | 20% | | | | Examination | 70% | | | | Total | 100% | | | | Course Lecturer | | | | | and Instructor | | | | | Course | Formal models of computation are abstract mathematical frameworks used to | | | | Description | study and analyze the behavior of computational systems. These models | | | | | provide a theoretical foundation for understanding the capabilities and | | | | | limitations of various computing devices and algorithms. | | | | Course | To teach the students: | | | | Objectives | | | | | | concepts of formal models of computation | | | | | • the Church-Turing thesis | | | | | lambda calculus | | | | | Syntax and basic operations | | | | | Introduction to finite automata | | | | | Deterministic and non-deterministic finite automata | | | | | Regular expressions and their equivalence to finite automata | | | | | | | | | Learning | At the end of the course, students will be able to: | | | | Outcome | | | | | | Different formal models of computation | | | | | Use lambda calculus | | | | | Describe different types of automata | | | | | • Introduction to other models of computation (e.g., Petri nets, cellular | | | | | automata) | | | | | Give comparison and analysis of different models | | | | | • State the applications of alternative models in specific domains | | | | | TI SPECIAL CONTRACTOR OF THE CONTRAC | | | | Detailed course | Automata theory: Roles of models in computation. Finite-state Automata, Push- | | | | contents | down Automata, Formal Grammars, Parsing, Relative powers of formal models. | | | Basic_computability: Turing machines, Universal Turing_Machines, Church's thesis, solvability and Decidability. [Introduction to language structures; languages and their representations; Grammars; Formal notations, types, Chomsky's Language hierarchy; sentence generation and recognition; derivations; Ambiguity and syntax trees; precedence grammars, recognizers. Regular grammar and finite state automata; context-free grammars; Chomsky, Greibach Normal Forms, Push-Down Automata, LR(K), grammars, recursive languages; semantics. Lab. Exercises.] | Course Contents Sequencing | | | | | |---------------------------------------|---|-------------------|--|--| | | Course Contents Sequencing | Allogated | | | | Weeks | Detailed Course Outline | Allocated
Time | | | | WEEK 1, 2 | | 6 Hours | | | | WEEK 1, 2 | Introduction to Computability Theory | o Hours | | | | | Overview of formal models of computation | | | | | | Introduction to the Church-Turing thesis | | | | | | Turing Machines and their properties | | | | | | Decidability and undecidability | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | Rice's theorem and the halting problem | | | | | MEETS 2 4 | Louis de Colonian | C III | | | | WEEK 3, 4 | Lambda Calculus | 6 Hours | | | | | Introduction to lambdo coloulus | | | | | | Introduction to lambda calculus Syntax and basis apparations | | | | | | Syntax and basic operations Padvetion strategies (a.g., beta reduction) | | | | | | Reduction strategies (e.g., beta-reduction) Classification and its analysis of analy | | | | | | Church encoding and its applications The state of t | | | | | | Turing-completeness of lambda calculus | | | | | WEEK 5, 6 | Finite Automata and Regular Languages | 6 Hours | | | | , , , , , , , , , , , , , , , , , , , | Time Tutomata and Regular Languages | 0 110015 | | | | | Introduction to finite automata | | | | | | Deterministic and non-deterministic finite automata | | | | | | Regular expressions and their equivalence to finite | | | | | | automata | | | | | | Closure properties of regular languages | | | | | | Pumping lemma for regular languages | | | | | | Tumping forming for regular languages | | | | | | C.A Test | | | | | WEEK 7, 8 | Context-Free Languages and Pushdown Automata | 6 Hours | | | | | 0 | | | | | | Introduction to context-free grammars | | | | | | Derivations and parse trees | | | | | | Pushdown automata and their relation to context-free | | | | | | grammars | | | | | | Context-free pumping lemma | | | | | | Closure properties of context-free languages | | |-------------|---|---------| | WEEK 9, 10 | Context-Free Languages and Pushdown Automata | 6 Hours | | | Introduction to context-free grammars Derivations and parse trees Pushdown automata and their relation to context-free grammars Context-free pumping lemma Closure properties of context-free languages | | | WEEK 11, 12 | Other Models of Computation | 6 Hours | | | Introduction to other models of computation (e.g., Petri nets, cellular automata) Comparison and analysis of different models Applications of alternative models in specific domains Limitations and open questions in the field | | | | C.A Test | | | | REVISION | | ## READING LIST: - Introduction to the Theory of Computation by Michael Sipser - Computability and Logic by George S. Boolos, John P. Burgess, and Richard C. Jeffrey - Introduction to Automata Theory, Languages, and Computation by John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman - Theory of Computation by Dexter C. Kozen - An Introduction to Formal Languages and Automata by Peter Linz