THOMAS ADEWUMI UNIVERSITY, OKO-IRESE			
Faculty	Computing and Applied Sciences		
Department	Mathematical and Computing Science		
Program	Computer Science		
Course Code	CSC 413		
Course Title	COMPUTER GRAPHICS AND VISUALIZATION		
Study Year	4		
Credit Hours	3		
Contact Hours	42		
Pre-requisite			
Status	Compulsory		
Semester	First		
Mode of	Lecture, Assessment and Practical		
Assessment			
Mode of Delivery	Classroom Lectures		
	Laboratory Practical Sessions		
Continuous			
Assessment	30%		
Examination	70%		
Total	100%		
Course Lecturer			
and Instructor			
Course	Computer graphics and visualization is a course that covers the principles,		
Description	techniques, and tools used to create and manipulate images, videos, and other		
	visual media using computers. The course typically starts with an introduction		
	to the basics of computer graphics, including the concepts of color models,		
	raster graphics, vector graphics, and geometric transformations.		
	The course then progresses to more advanced topics, such as 3D modeling,		
	rendering, animation, and virtual reality. Students will learn about the different		
	algorithms used to generate realistic images, as well as the software and		
	hardware tools used in the graphics pipeline.		
	Visualization is another important sound of the second still forms		
	Visualization is another important aspect of the course, which focuses on the		
	techniques used to represent and visualize complex data sets. The course covers		
	topics such as data visualization, scientific visualization, and information		
	visualization. Students will learn about the tools and techniques used to create		
	interactive and dynamic visualizations, as well as the principles of human-		
Course	computer interaction and visual perception. The objectives of a computer graphics and visualization course typically		
Objectives	include the following:		
	14. To provide students with a solid foundation in the principles,		
	techniques, and tools used in computer graphics and visualization.		
	teeninques, and tools used in computer graphics and visualization.		

- 15. To enable students to create and manipulate visual media using software tools and hardware devices.
- 16. To introduce students to the basics of 2D and 3D graphics, including color models, raster graphics, vector graphics, and geometric transformations.
- 17. To expose students to advanced topics in computer graphics, such as rendering, animation, and virtual reality.
- 18. To teach students about the different algorithms used to generate realistic images, as well as the software and hardware tools used in the graphics pipeline.
- 19. To provide students with an understanding of the principles of human-computer interaction and visual perception, and how they apply to the design of visual media.
- 20. To teach students about the techniques used to represent and visualize complex data sets, including data visualization, scientific visualization, and information visualization.
- 21. To provide students with hands-on experience in designing and implementing visual media projects, such as 3D models, animations, and visualizations.

Learning Outcome

At the end of this course, students should be able to:

- Students should have a solid understanding of the principles, techniques, and tools used in computer graphics and visualization.
- Students should be able to create and manipulate visual media using software tools and hardware devices.
- Students should be able to design and implement visual media projects, such as 3D models, animations, and visualizations.
- Students should be able to analyze complex data sets and represent them visually using techniques such as data visualization, scientific visualization, and information visualization.
- Students should be able to effectively communicate their ideas and findings through visual media, and understand how to use visual media to effectively communicate with others.
- Students should be able to apply their knowledge and skills to solve real-world problems, and to identify and evaluate different solutions to those problems.
- Students should be able to critically evaluate the effectiveness of visual media, and to analyze the impact of visual media on society and culture.

	Students should be able to use their creativity to develop innovation	ve solutions	
	and designs for visual media project	ive solutions	
Detailed course	Hardware aspect, plotters microfilm, plotters display, graphic tablet	s light nens	
contents	other graphical input aids Facsimile and its problems Refresh display refresh		
Contonius	huggers, changing images, light pen interaction. Two and three-dimensional		
	transformation, perspective Clipping algorithms. Hidden line ren		
	surface removal. Warnock method/ algorithm, shading, data r		
	graphical input. Introduction to handwriting and character recogn	nition. Curve	
	synthesis and fitting. Contouring. Ring structures versus doubly		
	Hierarchical structures. Data structure: Organization for interactive	e graphics.	
	Course Contents Sequencing		
	•	Allocated	
Weeks	Detailed Course Outline	Time	
WEEK 1, 2	Introduction to Computer Graphics:	6 Hours	
	Overview of computer graphics and visualization		
	Basic concepts of graphics systems		
	 Graphics pipeline and transformations 		
	Coordinate systems and projections		
WEEK 3,4,5	2D Graphics:	9 Hours	
	 Fundamental concepts of 2D graphics 		
	 Geometric primitives and algorithms 		
	2D transformations and viewing		
	Raster graphics and algorithms		
	Anti-aliasing and image processing		
	C.A Test		
WEEK 6,7,8	3D Graphics:	9 Hours	
	Fundamental concepts of 3D graphics		
	Geometric modeling and representation		
	 3D transformations and viewing 		
	Illumination and shading models		
	Texture mapping and compositing		
	Hidden surface removal and clipping		
WEEK 9	Graphics APIs:	3 Hours	
	Overview of graphics APIs such as OpenGL, DirectX, and		
	Vulkan		
	 Graphics programming in a selected API 		

	Use of graphics libraries and tools	
WEEK 10	Visualization Techniques: Visualization of scientific and engineering data Volume and scalar visualization techniques Vector and tensor visualization techniques Information visualization and visual analytics C.A Test	3 Hours
WEEK 11	 Virtual Reality and Augmented Reality: Concepts of virtual reality and augmented reality Graphics techniques for virtual reality Interaction techniques for virtual reality and augmented reality 	3 Hours
WEEK 12	 Graphics Applications: Graphics applications in various domains such as gaming, entertainment, education, medicine, and engineering Real-time graphics applications Future directions in computer graphics and visualization. 	3 Hours
	REVISION	

READING LIST:

- 6. Computer Graphics: Principles and Practice by James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.
- 7. Interactive Computer Graphics: A Top-Down Approach with WebGL by Edward Angel and Dave Shreiner.
- 8. Data Visualization: Principles and Practice by Alexandru C. Telea.
- 9. 3D Computer Graphics: A Mathematical Introduction with OpenGL by Samuel R. Buss.
- 10. Real-Time Rendering by Tomas Akenine-Moller, Eric Haines, and Naty Hoffman.