

THOMAS ADEWUMI UNIVERSITY, OKO-IRESE

Faculty Computing and Applied Sciences

Department Mathematical and Computing Science

Program Computer Science

Course Code CSC 401

Course Title ORGANIZATION OF PROGRAMMING LANGUAGES

Study Year 4

Credit Hours 3

Contact Hours 36

Pre-requisite
Status Compulsory

Semester First

Mode of

Assessment

Lecture, Assessment and Practical

Mode of Delivery • Classroom Lectures
• Laboratory Practical Sessions

Continuous

Assessment

Examination
Total

30%

70%
100%

Course Lecturer

and Instructor

Course

Description

The organization of programming languages refers to how programming

languages can be classified and categorized based on their features and

characteristics. There are several ways to organize programming languages,

including:

Programming Paradigms: Programming languages can be classified based on

their programming paradigm, which refers to the way they support and facilitate

the creation of software. The main programming paradigms are procedural,

object-oriented, functional, logical, and concurrent.

Type System: Programming languages can also be classified based on their type

system, which refers to how they handle data types and their compatibility. The

main type systems are static and dynamic typing.

Syntax: Programming languages can be classified based on their syntax, which

refers to the grammar and structure of the language. The main syntax types are

imperative, declarative, and functional.

 Abstraction: Programming languages can also be classified based on their level

of abstraction, which refers to how high or low-level the language is. The main

levels of abstraction are low-level languages, like assembly and machine

languages, and high-level languages, like Python and Java.

Application Domain: Programming languages can also be classified based on

their application domain, which refers to the types of applications they are best

suited for. For example, languages like R and Matlab are suited for scientific

and data analysis applications, while languages like JavaScript and PHP are

suited for web development.

Course

Objectives

1. Understand the features and characteristics of programming languages:

By studying the organization of programming languages, programmers

can gain a deeper understanding of the different features and

characteristics of different programming languages. This knowledge can

help them choose the best language for a particular task or project.

2. Compares programming languages: By organizing programming

languages based on their features and characteristics, programmers can

compare different programming languages and make informed decisions

about which language to use for a particular task or project.

3. Understand the evolution of programming languages: By studying the

organization of programming languages, programmers can gain an

appreciation for how programming languages have evolved over time

and how new features and characteristics have been added to them.

4. Improve programming skills: Studying the organization of programming

languages can help programmers to improve their programming skills

by giving them a deeper understanding of programming concepts and

principles.

5. Prepare for learning new programming languages: By studying the

organization of programming languages, programmers can prepare

themselves for learning new programming languages more easily. They

can use their knowledge of the features and characteristics of different

languages to understand new languages more quickly and easily.

Learning

Outcome
• By studying the organization of programming languages, students will

gain knowledge of the different programming paradigms, including

procedural, object-oriented, functional, logical, and concurrent. They

will be able to identify the strengths and weaknesses of each paradigm

and understand when to use each one.

• Students will gain an understanding of the different type systems used in

programming languages, including static and dynamic typing. They will

learn how type systems affect the reliability and maintainability of code.

• Students will be able to analyze the syntax of programming languages

and understand how it affects the readability and maintainability of

code.

 • Students will gain an understanding of the different levels of abstraction

in programming languages and be able to identify when to use high-

level or low-level languages for different tasks.

• By studying the organization of programming languages, students will

gain knowledge of the different application domains for programming

languages. They will be able to identify which languages are best suited

for different types of applications.

• Students will be able to compare programming languages and evaluate

their suitability for different tasks based on their features and

characteristics.

• By studying the organization of programming languages, students will

be better prepared to learn new programming languages more easily and

quickly.

Detailed course

contents

Language definition structure. Data types and structures, Review of basic data

types, including lists and trees, control structure and data flow, Run-time

consideration, interpretative languages, lexical analysis and parsing.

Course Contents Sequencing

Weeks

Detailed Course Outline

Allocated

Time

WEEK 1 • Overview of programming languages

• History and evolution of programming languages

• Language classification

3 Hours

WEEK 2 Syntax and Semantics

• Syntax diagrams and regular expressions

• Context-free grammars

• Semantics of programming languages

• Data types, expressions, control structures, functions, and

parameter passing

3 Hours

WEEK 3, 4 Programming Paradigms

• Procedural programming

• Object-oriented programming

• Functional programming

• Logic programming

• Concurrent programming

C.A Test

6 Hours

WEEK 5, 6 Type Systems

• Type systems and their role in programming languages

• Static typing and dynamic typing

• Type inference and type checking

6 Hours

WEEK 7,8 Language Implementation

• Lexical analysis and scanning

• Parsing and syntax analysis

• Intermediate representations and code generation

• Optimization techniques

6 Hours

WEEK 9, 10 Domain-Specific Languages

• Embedded and domain-specific languages

• Application of domain-specific languages

• Creating a domain-specific language

C.A Test

6 Hours

WEEK 11 • Language implementation: parsing

• Syntax diagrams and regular expression

• Language implementation: code generation

• Intermediate representations and optimization

3 Hours

WEEK 12 • Domain-specific languages

• Embedded and domain-specific language

• Comparison of programming languages

• Evaluation of programming languages for different

application domains

3 Hours

 REVISION

READING LIST:

• Programming Language Pragmatics by Michael L. Scott:

• Concepts of Programming Languages by Robert W. Sebesta:

• Types and Programming Languages by Benjamin C. Pierce:

• Programming Languages: Design and Implementation by Terrence W. Pratt and Marvin V.

Zelkowitz:

• Essentials of Programming Languages by Daniel P. Friedman and Mitchell Wand:

• Programming Language Foundations by Benjamin C. Pierce, et al.:

• Language Implementation Patterns by Terence Parr:

• Programming Languages – An Introductory text on concepts and principles by E.K. Olatunji
,2014

•

