
 THOMAS ADEWUMI UNIVERSITY, OKO
COURSE OUTLINE

Faculty Computing and Applied Sciences
Department Mathematical and Computing Science
Course Title COMPILER CONSTRUCTION I
Year of Study 3
Course Code CSC 310
Credit Hours 3

Contact

Hours

45

Mode of

Delivery

Classroom Lectures, Recitations, Tutorial

Mode of

assessment

 Weight%

Continuous

Assessment

 30%

Final

Examination

 70%

Total 100%

Course

Lecturers and

Instructors

Prof Francisca Oladipo

Course

Description

The course introduces the design and implementation of a

compiler with emphasis on principles and techniques for

program analysis and translation.

It also gives an overview of the tools for compiler

construction. Lexical analysis, token selection, transition

diagrams, and finite automata. The use of context-free

grammars to describe syntax, derivations of parse trees,

and construction of parsers. Syntax-directed translation

schemes; Intermediate code; Symbol table; Code

generation; Detection, reporting, recovery, and

correction of errors.

Course

Objectives

Some of the following:

This course would enable the understanding of the

following:

1. the major steps involved in compiling a high-

level programming

language down to a low-level target machine

language

2. the major components and functions of a modern

compiler and well as the different phases of a

compiler.

 3. the key issues in the construction of production of

compilers for real high-level Languages and real

target machines

• 4. how a compiler can generate code to make good use

of some target

machine characteristics

5. various classes of grammars, languages, and

automata, and employ these to solve common

software problems

6. work together effectively in teams on a substantial

software implementation project

7.

Learning

Outcomes

Upon completion of this course, students will be able to do

the following:

1. Write and use simple high-level programming languages

to implement. sub-components/ sub-parts of a compiler

2. Use compiler construction tools to generate lexical and

syntax analyzers.

3. Understand and be able to explain the functions of the

different phases of a compiler.

4. Understand the key issues in the construction of

production of compilers for real high-level Languages and

real target machines

5. Understand how a compiler can generate code to make

good use of some target machine characteristics

–

Teaching and

Learning

1. Lectures: contents of the course will be presented and

taught to students in the classroom. Classroom teachings

will be supported with practical examples.

2. Projects: Group and individual projects will be given to

students to solve practical problems in compiler

construction. Students will be expected to come to the

classroom individually and

defend their respective individual projects.

3. Assignments: Students will; be asked to solve class

assignments with respect to topics covered in the class to

examine, test the understanding of and reveal the state of

assimilation of the course
contents by students.

 4. Term Papers: Students will be asked to write

comprehensive term papers on selected sub-topics within

the compiler construction course contents. The term papers

will help students develop their understanding and in-depth

analysis of components

of the course contents. In some situations, students will be

given a typical compiler construction research paper and

will be asked to study, analyze and summarize in their own

understanding, gaps and findings from the contents of the

paper. Such term

papers however will be subjected to thorough plagiarism

checks

Detailed

Course

Content

Review of compilers assemblers and interpreters, structure

and functional aspects of a typical compiler, syntax

semantics and, functional relationship

between lexical analysis, expression analysis and code

generation. Internal form of course programme. Use of a

standard compiler

(FORTRAN<COBOL/PL) as a working vehicles. Error

detection and recovery. Grammars and Languages: the

parsing problem. The scanner.

Weeks Detailed Course Outlines Allocated

Time

Week 1, 2 1. Introduction to compiler construction, Reasons why

it is essential to study compiler construction,

Languages and Translators

2. Review of compilers assemblers and interpreters,

structure and functional aspects of a typical compiler

6 hours

Week 3,4 3. Compiler structure and design issues, Phases of

compiler, Internal Structure of a Compiler, Compiletime

and run- time diagnostics

Recitation and Tutorials

Continuous Assessment I

-

6 hours

Week 5,6- 4. syntax semantics and, functional relationship

between lexical analysis, expression analysis and

code generation

5. Symbol tables and their data structures, Lexical

analysis, Token, Pattern and lexemes, Operations on

languages, Regular expressions, Introduction to

Syntax analysis and Applications of Syntax analysis.

6 hours

 Recitation and Tutorials

Week 7,8 6. Types of Errors encountered during compiler usage

and how to recover from such errors
Recitation and Tutorials

6 hours

Week 9 Error detection and recovery. Grammars and

Languages: the parsing problem. The scanner.
Recitation and Tutorials

3 hours

Week 10-12 8. Use of a standard compiler

(FORTRAN<COBOL/PL) as a working vehicle.

9. Practical Sessions
10. Revision and Continuous Assessment II

9 hours

After week 12 29. Examination

Recommended Reading Material

1. Aho, Alfred & Sethi, Ravi & Ullman, Jeffrey. Compilers: Principles, Techniques, and

Tools ISBN 0201100886 The Classic Dragon book.

2. Appel, A., Modern Compiler Implementation in Java, 2nd ed., Cambridge University

Press, 2002.

3. Appel, Andrew Modern Compiler Implementation in C/Java/ML (respectively ISBN 0-

521-58390-X,ISBN 0-521-58388-8, ISBN 0-521-58274-1) is a set of cleanly written texts

on compiler design, studied from various different methodological perspectives.

4. Brown, P.J. Writing Interactive Compilers and Interpreters ISBN 047127609X Useful

practical advice, not much theory.

5. Fischer, Charles & LeBlanc, Richard. Crafting A Compiler ISBN 0805332014 Uses an

ADA like pseudo-code.

6. Fischer, LeBlanc, Cytron, Crafting a Compiler Implementation, Addison-Wesley

7. Holub, Allen Compiler Design in C ISBN 0131550454 Extensive examples in "C".

8. Hunter, R. The Design and Construction of Compilers ISBN 0471280542 several chapters

on theory of syntax analysis, plus discussion of parsing difficulties caused by features of

various source languages.

9. Keith, D. Cooper & Linda Torczon, "Engineering a Compiler", Morgan Kaufmann

Publishers, 2004

10. Pemberton, S. & Daniels, M.C. Pascal Implementation. The P4 Compiler ISBN

0853123586 (Discussion) and ISBN 085312437X (Compiler listing) Complete listing and

readable commentary for a Pascal compiler written in Pascal.

11. Randy Allen and Ken Kennedy, "Optimising Compilers for Modern Architectures",

Morgan Kaufmann Publishers, 2001.

12. Weinberg, G.M. The Psychology of Computer Programming: Silver Anniversary Edition

ISBN 0932633420 Interesting insights and anecdotes.
13. Wirth, Niklaus Compiler Construction ISBN 0201403536 From the inventor of Pascal,

Modula-2 and Oberon-2, examples in Oberon.

