| | THOMAS ADEWUMI UNIVERSITY, OKOCOURSE | | |---------------|--------------------------------------|---------| | F 14 | OUTLINE | | | Faculty | Computing and Applied Sciences | | | Department | Mathematical and Computing Science | | | Course Title | PROGRAMMING IN LOW-LEVEL LANGUAGES | | | Year of | 2 | | | Study | | | | Course Code | CSC 208 | | | Credit | 2 | | | Hours | | | | Contact | 30 | | | Hours | | | | Mode of | Classroom Lectures, | | | Delivery | & Laboratory Practical Sessions | | | - | | | | Mode of | | Weight% | | assessment | | _ | | Continuous | | 30% | | Assessment | | | | Final | | 70% | | Examination | | | | Total | | 100% | | Course | Dr. E. K. Olatunji – Lecturer | | | Lecturers and | Mr. Taiwo Timothy – Lab Instructor | | | Instructors | | | | | | | | Course | | | | Description | | | | | | | | | | | | Course | | | | Objectives | Some of the following: | | | | | | | Learning | | |-----------------------|--| | Outcomes | Upon completion of this course, students will be able to do the following: | | | Explain features of the first 3 generations of programming languages Explain issues that led to the development of Low level languages Recall the various number systems Develop algorithms for conversion among the various number systems Explain underlying principles of program development in a generic assembly language Explain some important hardware features related to instruction execution: instruction set, Instruction format, Addressing techniques, etc Explain the registers involved in instruction execution in X86 system Write simple assembly language program in Microsoft macro Assembler (MASM) | | Teaching and Learning | The class will meet for 3 hours each week. | | Detailed | Instruction Formats; Addressing Systems; CPU internal | | Course | Structure; Registers, Memory, ALU, CU. Controls - | | Content | Loops and Switches; Macro Instructions; Interrupts; File | | | Structures; Storage Control; Relocation; Linking/Loading; | | | Editing; | | | Hardware System Programming using simple machine codes. Problem solving using Assembler/ Machine coding. Intel | | | Instruction Set, Address mode. The relationships between H/L languages and the Computer Architecture that underlies their implementation: basic machine architecture, assembles specification and translation of P/L Block Structured Languages, parameter passing mechanisms. | | |-----------|--|-------------------| | Weeks | Detailed Course Outlines | Allocated
Time | | Week 1 | 1. Introduction to Programming Languages Categories of programming language (PL) Features, advantages and disadvantages of different levels of PL 2. Number systems – Given as assignment to be corrected | 2 hours | | Week 2,3 | 3. Program development in a Generic Assembly language (AL) Structure of a generic AL program Translation of an AL program | 4 hours | | Week 4,5 | 4. Review of the Structure of a Computer System The peripherals and their functions CPU – ALU, CU, Memory unit Registers and their functions in instruction execution Instruction Execution cycle 5. Machine Instruction Instruction set Instruction & Adress Format, etc | 4 hours | | Week 6,7 | 6. General operand Addressing Techniques Indirect, direct, indexed, etc addressing techniques Advantages and disadvantages of each Calculation of effective address in each technique Programming a new machine Continous assessment I | 4 hours | | Week 8, 9 | 9. Assembly Language for X86 Processor - AL program segment in X86 - AL statement in Microsoft Macro Assembler (MASM) - Some machine and pseudo instruction in MASM | 4 hours | | | Sample AL program that displays the "Hello world" | | |---------------|---|---------| | Week 10 | 10. Program Execution registers in X86 Processor The (8) -32bit General purpose registers and their functions The 16-bit segment registers Etc | 2 hours | | Week 11-14 | 11. Fundamentals of MASM 12. Machine Opcodes in MASM 13. I/O Operations in X86 14. Continuous Assessment II | 8 hours | | After week 14 | 15. Examination | | ## **Recommended Reference materials** - 1. Assembly language Programming (An Introductory Text) by E. K. Olatunji 2. Computer Science by C.S. French, @ BookPower, 5th edition - 3. Assembly language for X86 Processors by K. R. Irvine @ 2011, Pearson Education, Inc, Upper Saddle River, New Jersey, USA - 4. Online Resources