	THOMAS ADEWUMI UNIVERSITY, OKOCOURSE	
F 14	OUTLINE	
Faculty	Computing and Applied Sciences	
Department	Mathematical and Computing Science	
Course Title	PROGRAMMING IN LOW-LEVEL LANGUAGES	
Year of	2	
Study		
Course Code	CSC 208	
Credit	2	
Hours		
Contact	30	
Hours		
Mode of	Classroom Lectures,	
Delivery	& Laboratory Practical Sessions	
-		
Mode of		Weight%
assessment		_
Continuous		30%
Assessment		
Final		70%
Examination		
Total		100%
Course	Dr. E. K. Olatunji – Lecturer	
Lecturers and	Mr. Taiwo Timothy – Lab Instructor	
Instructors		
Course		
Description		
Course		
Objectives	Some of the following:	

Learning	
Outcomes	Upon completion of this course, students will be able to do the following:
	 Explain features of the first 3 generations of programming languages Explain issues that led to the development of Low level languages Recall the various number systems Develop algorithms for conversion among the various number systems Explain underlying principles of program development in a generic assembly language Explain some important hardware features related to instruction execution: instruction set, Instruction format, Addressing techniques, etc Explain the registers involved in instruction execution in X86 system Write simple assembly language program in Microsoft macro Assembler (MASM)
Teaching and Learning	The class will meet for 3 hours each week.
Detailed	Instruction Formats; Addressing Systems; CPU internal
Course	Structure; Registers, Memory, ALU, CU. Controls -
Content	Loops and Switches; Macro Instructions; Interrupts; File
	Structures; Storage Control; Relocation; Linking/Loading;
	Editing;
	Hardware System Programming using simple machine codes. Problem solving using Assembler/ Machine coding. Intel

	Instruction Set, Address mode. The relationships between H/L languages and the Computer Architecture that underlies their implementation: basic machine architecture, assembles specification and translation of P/L Block Structured Languages, parameter passing mechanisms.	
Weeks	Detailed Course Outlines	Allocated Time
Week 1	 1. Introduction to Programming Languages Categories of programming language (PL) Features, advantages and disadvantages of different levels of PL 2. Number systems – Given as assignment to be corrected 	2 hours
Week 2,3	 3. Program development in a Generic Assembly language (AL) Structure of a generic AL program Translation of an AL program 	4 hours
Week 4,5	 4. Review of the Structure of a Computer System The peripherals and their functions CPU – ALU, CU, Memory unit Registers and their functions in instruction execution Instruction Execution cycle 5. Machine Instruction Instruction set Instruction & Adress Format, etc 	4 hours
Week 6,7	6. General operand Addressing Techniques Indirect, direct, indexed, etc addressing techniques Advantages and disadvantages of each Calculation of effective address in each technique Programming a new machine Continous assessment I	4 hours
Week 8, 9	 9. Assembly Language for X86 Processor - AL program segment in X86 - AL statement in Microsoft Macro Assembler (MASM) - Some machine and pseudo instruction in MASM 	4 hours

	 Sample AL program that displays the "Hello world" 	
Week 10	 10. Program Execution registers in X86 Processor The (8) -32bit General purpose registers and their functions The 16-bit segment registers Etc 	2 hours
Week 11-14	11. Fundamentals of MASM 12. Machine Opcodes in MASM 13. I/O Operations in X86 14. Continuous Assessment II	8 hours
After week 14	15. Examination	

Recommended Reference materials

- 1. Assembly language Programming (An Introductory Text) by E. K. Olatunji 2. Computer Science by C.S. French, @ BookPower, 5th edition
- 3. Assembly language for X86 Processors by K. R. Irvine @ 2011, Pearson Education, Inc, Upper Saddle River, New Jersey, USA
- 4. Online Resources