THOMAS ADEWUMI UNIVERSITY, OKO-IRESE			
Faculty	Computing and Applied Sciences		
Department	Mathematical and Computing Science		
Program	Computer Science		
Course Code	CSC 204		
Course Title	FUNDAMENTALS OF DATA STRUCTURES		
Study Year	2		
Credit Hours	3		
Contact Hours	45		
Pre-requisite			
Status	Required		
Semester	First		
Mode of	Lecture, Assessment and Practical		
Assessment			
Mode of Delivery	Classroom Lectures		
	Laboratory Practical Sessions		
Continuous			
Assessment	30%		
Examination	70%		
Total	100%		
Course Lecturer	Mr. Ayepeku Felix		
and Instructor			
Course Description	This course introduces students to the underlying principles of data structures and algorithms. It also helps to develop students' understanding of the basic		
Description	concepts of object-oriented programming using C++. This course also provides		
	practical knowledge and hands-on experience in designing and implementing		
	data structures and algorithms and their manipulation. Topics to be covered include introduction to C++ programming language, pointers and arrays,		
	classes, recursion, stacks, queues, lists, tables, trees, binary trees, search trees,		
	heaps and priority queues; sorting, hashing, garbage collection, storage		
	management; and the rudiments of the analysis of algorithms.		
	management, and the rudiments of the analysis of argorithms.		
Course	To develop students' knowledge and understanding of the fundamental		
Objectives	principles of data structures.		
	 To develop students' skills in analyzing data structures. 		
	To build up students' capacity to evaluate different algorithmic		
	techniques.		
	 To build up students' capacity to write programs for developing simple 		
	applications.		
	To develop students' competence in analysing data structures.		
	To Build up students' capacity to write programmes for developing simple		
	To Build up students' capacity to write programmes for developing simple applications.		

Learning Outcome	 describe the basic operations on arrays, lists, stacks ar structures. explain the notions of hashing, trees and binary search tree describe the efficiency of algorithms with respect to the structures. explain the basic concepts of object-oriented programming develop C++ programs for simple applications. develop an efficient algorithm of a particular problem doma with respect to the choice of data structures translate the algorithms to application written in C++ 	es. choice of data
Detailed course	Primitive types, Arrays, Records Strings and String proc	
contents	representation in memory, Stack and Heap allocation, Que Implementation Strategies for stack, queues, trees. Run management; Pointers and References, linked structures.	
	Course Contents Sequencing	
Weeks	Detailed Course Outline	Allocated Time
WEEK 1	 introduction to vector and algorithm Data structures: definition of basic terms (data types, abstract data types and data structure). Importance of data structures in computer programming 	3 Hours
WEEK 2	Types of data structure: linear and non-linear data structure; Array: declaration, classification, application of arrays	3 Hours
WEEK 3	List: operations, list implementation (array list, linked list), singly, doubly linked list, sorted list	6 Hours
WEEK 4 and 5	 Stack: operation, static and dynamic stacks, application of stacks C.A Test 	6 Hours
WEEK 6 and 7	Queues: operations of queues, storing queues in static or dynamic data structures	6 Hours
WEEK 8 and 9	Trees: binary search trees, trees transversal (in-order, Post-order, and preorder) Common operations on a tree, application of trees in computer programming	6 Hours
WEEK 10 and 11	Hashing and hash table, garbage collection, storage management Analysis of algorithm, synergy between data structures and algorithm C.A Test	6 Hours
WEEK 12	Factors to be considered in the choice of data structures	3 Hours

and algorithms	
REVISION	

READING LIST:

- Hubbard, J.R. (2000). *Data Structures and Algorithms*,. McGraw-Hill, New *Sc* York, USA, 407p.
- Lewis, H.R., Denenberg, L., (1991). *Data Structures and their Algorithms*. Published by Addison-Wesley, UK. 509p.
- A Practical Introduction to Data Structures and Algorithm Analysis Third Edition (Java) Published by Clifford A. Shaffer
- Data Structures in Java Data Structures in Java Laboratory College by Sandra Andersen Concordia College