THOMAS ADEWUMI UNIVERSITY				
COURSE OUTLINE				
Faculty	Computing and Applied Sciences			
Department	Biological Sciences			
Course Title	ENZYME AND INTERMEDIARY METABOLISM			
Year of Study	2			
Course Code	BCM 218			
Credit Hours	2			
Contact Hours	30			
Mode of Delivery	Classroom Lectures			
Mode of Assessment		Weight %		
Continuous Assessment		40%		
Final Examination 600		60%		
Total		100 %		
Course Lecturers	FAROHUNBI S.T.			
Course Description	The course is expected to expose the students to the basics of enzyme action, catalysis, and mechanism of action as well as coenzymes and cofactors. The students will also teach the students the major metabolic pathways in carbohydrate, protein and fatty acids metabolism as well as DNA replication, transcription and protein synthesis			
Course objective	 This course would enable the understanding of the following: 1. Enzyme inhibition and coenzymes 2. Metabolic pathways involved in Glycolysis, TCA, oxidative phosphorylation, and electron transport chain 3. Metabolism of proteins and amino acids 4. Chemistry and metabolism of cholesterol 			

	5. Drug metabolism and introductory nutritional biochemistry		
Learning Outcomes	By the end of the course, student will be able to explain the		
	following using relevant pathways:		
	1. Enzyme inhibition and coenzymes		
	2. Metabolic pathways involved in Glycolysis, TCA, oxidative		
	phosphorylation, and electron transport chain		
	3. Metabolism of proteins and amino acids		
	4. Chemistry and metabolism of cholesterol		
	5. Drug metabolism and introductory nutritiona	l biochemistry	
Teaching and	The class will meet for two hours each week. Class time will be used		
Learning	for a combination of lectures and Tutorial sessions		
Detailed Course	Intracellular localization of enzymes. Properties of enzymes. Enzyme		
Content	kinetic and inhibition; co-enzymes and cofactors. Glycolysis,		
	Tricarboxylic acid cycle, Oxidative Phosphorylation and Hexose		
	monophosphate shunt. Membranes and transport. Glycogen synthesis		
	and breakdown. Oxidative deamination, transamination, and urea		
	cycle. Degradation of amino acid. Synthesis of fatty acids, oxidation		
	of fatty acids. DNA replication and transcription: pro	tein biosynthesis	
	and regulation. Cholesterol: chemistry, synthesis, and breakdown.		
	Biochemical basis of hormone action. Drug metabolism. Mineral		
	metabolism and role of calcium in bone formation. Introduction to		
	Nutritional Biochemistry.		
	Course content sequencing		
Weeks	Detailed Course Outline	Allocated	
		Time	
Week 1.2	Intracellular localization of enzymes	1 hours	
WCCK 1-2	Properties of enzymes	4 110013	
	Enzymes kinetic and inhibition		
Week 3-4	Coenzymes and Cofactors	4 hours	
	Glycolysis, Tricarboxylic acid cycle		
	Oxidative phosphorylation and Hexose		
	monophosphate shunt		
	monophosphilic blant		

Week 5-7	Membranes and Transport	6 hours		
	Glycogen synthesis and breakdown			
	Oxidative deamination, transamination and urea cycle			
	Degradation of amino acid, Synthesis of fatty acids, oxidation of fatty acids			
Week 8-9	DNA replication and transcription; protein biosynthesis and regulation Cholesterol: chemistry, synthesis and breakdown	4 hours		
Week 10	Discharging having of hormony action	2 h aura		
week 10	Drug metabolism. Mineral metabolism and role of calcium in bone formation. Introduction to Nutritional Biochemistry	2 nours		
After Week 12	Examinations			
Recommended Reading Material				

- 1. David, L., Nelson, D.L., Cox, M.M., Stiedemann, L., McGlynn Jr, M.E. and Fay, M.R., 2000. Lehninger principles of biochemistry.
- 2. Lieberman, M. and Marks, A.D., 2009. *Marks' basic medical biochemistry: a clinical approach*. Lippincott Williams & Wilkins.
- 3. Rodwell, V.W., 2015. Harper's illustrated biochemistry. McGraw-Hill Education.
- 4. Vasudevan, D.M., Sreekumari, S. and Vaidyanathan, K., 2019. *Textbook of biochemistry for medical students*. Jaypee brothers Medical publishers.
- 5. Chatterjea, M.N. and Shinde, R., 2011. *Textbook of medical biochemistry*. Wife Goes On.

Course Code: BCM 218

Course Title: Enzymes and Intermediary metabolism

Preamble: Biochemistry is the study of biological and structural functions of biomolecules and their metabolism.

A. Specific Course Objectives/Learning Outcomes

This course would enable the understanding of the following

1. Enzyme inhibition and coenzymes

- 2. Metabolic pathways involved in Glycolysis, TCA, oxidative phosphorylation, and electron transport chain
- 3. Metabolism of proteins and amino acids
- 4. Chemistry and metabolism of cholesterol
- 5. Drug metabolism and introductory nutritional biochemistry

Learning Activities/Course Delivery Methods

Lectures: Detailed content of course are taught in class

Course Content: Intracellular localization of enzymes. Properties of enzymes. Enzyme kinetic and inhibition; co-enzymes and cofactors. Glycolysis, Tricarboxylic acid cycle, Oxidative Phosphorylation and Hexose monophosphate shunt. Membranes and transport. Glycogen synthesis and breakdown. Oxidative deamination, transamination, and urea cycle. Degradation of amino acid. Synthesis of fatty acids, oxidation of fatty acids. DNA replication and transcription: protein biosynthesis and regulation. Cholesterol: chemistry, synthesis, and breakdown. Biochemical basis of hormone action. Drug metabolism. Mineral metabolism and role of calcium in bone formation. Introduction to Nutritional Biochemistry.