THOMAS ADEWUMI UNIVERSITY		
COURSE OUTLINE		
Faculty	Computing and Applied Sciences	
Department	Biological Science	
Course Title	PROTEIN AND AMINO ACID METABOLISM	
Year of Study	3	
Course Code	BCH 316	
Credit Hours	2	
Contact Hours	30	
Mode of	Classroom Lectures	
Delivery		
Mode of	Weight%	
Assessment		
Continuous	40%	
Assessment		
Final	60%	
Examination		
Total	100%	
Course Lecturer	Dr A.T. Bamigbade	
and Instructor(s)		
Course	Biochemistry involves the reactions leading to the buildup and breaking down	
Description	of macromolecules within the cell or living organism. For any student offering	
	biochemistry it is important to understand molecular basis of inborn errors of	
	metabolism, and the urea cycle	
Course	This course would enable the understanding of the following:	
Objective and	1. A detailed biosynthesis and degradation of amino acids	
	2. Classification of essential and non-essential amino acids	
	3. Molecular basis of inborn errors of metabolism	
	4. All the chemical basis of urea cycle	
Learning	By the end of the course, students will be able to:	
Outcomes	1. Highlight all the 20 protein-forming amino acids	
	2. Group amino acids into respective classes	
	3. Understand and give overview of amino acid biosynthesis and	
	catabolism	
	4. Highlight all the reaction steps involved in the urea cycle	

	 5. Highlight and explain in detail a number of inborn errors o metabolism 6. Explain protein purification and steps involved from isolat protein characterization 	f ion to		
Teaching and Learning	The class will meet for 3 hours each week. Class time will be used for a combination of lecture, classwork and tutorials			
Detailed Course	Amino acids as building blocks of protein; covalent backbone of proteins;			
Content	Amino acid sequence of proteins. Protein isolation, fractionation, purification			
	and characterization of proteins. Biological functions of protein	s. Oxidative		
	degradation of amino acids and metabolism of one carbon unit. Bio	osynthesis of		
	amino acids and some derivatives; the urea cycle; metabolism	of inorganic		
	nitrogen. Disorders & Inborn errors of amino acid metabolism. Cr	eatinine and		
	Creatinine metabolism. Protein Catabolism			
Course Content	Sequencing			
Weeks	Detailed Course Outline	Allowed		
		Time		
Weekl	1. Introduction to amino acid	2 Hours		
	1. Define amino acids			
	2. Draw the structure a typical amino acid			
	3. Classify amino acid into essential and non-essential amino			
	acids			
	• Draw an the 20 anniho acids			
Week2,3	0. Discuss biosynthesis and catabolism of amino acids	4 Hours		
	0. Continuous assessment I			
		10.11		
Week4,5,6,	0. Urea cycle, ketogenic and glucogenic amino acids, protein	10 Hours		
	catabolism			
Weeks7,8,9	1. inborn errors of metabolism of amino acid metabolism and	10 Hours		
	metabolism of one-carbon unit, creatine and creatine			
	metabolism			
W. 110111		4.11		
week10,11,1	U. Protein isolation, fractionation, purification and	4 Hours		
2	characterization of proteins. Continuous Assessment II			
After Week	0. Examinations			
12				
Recommended	Recommended Reading Material			

- Reginald Garrett and Charles Grisham (2010). <u>Biochemistry</u>. Brooks/Cole, Cengage Learning
- 2. David Nelson and Michael Cox (2016). <u>Principles of Biochemistry.</u> McGrawHill education
- 3. Victor Rodwell, David Bender, Kathleen Botham, Peter Kennelly, and Anthony Weil (2018). <u>Harper's Illustrated Biochemistry</u>. McGrawHill education lange

Course Code: BCH 316 **Course Title**: Protein and Amino Acid Metabolism

Preamble: Biochemistry involves the metabolism of macromolecules within the cell or living organism. For a biochemistry student, it is important to be familiar with amino acids biosynthesis and degradation, and inborn errors of metabolism. Again, it is essential to know the basic principles guiding protein isolation, purification and characterization.

Specific Course Objective/Learning Outcomes

This course would enable the understanding of the following:

- 1. The fundamental meaning of amino acids, peptide bonds joining one amino acid to another and their role in protein formation
- 2. Classification and chemistry of amino acids, proteins and their derivatives
- **3.** Introductory chemistry of biomacromolecule; isolation, purification and characterization especially that of protein
- 4. Deep knowledge in inborn errors of metabolism

Learning Activities/ Course Delivery Methods

Lectures: Detailed content of course are taught in class

B. **Course Content:** Amino acids as building blocks of protein; covalent backbone of proteins; Amino acid sequence of proteins. Protein isolation, fractionation, purification and characterization of proteins. Biological functions of proteins. Oxidative degradation of amino acids and metabolism of one carbon unit. Biosynthesis of amino acids and some derivatives; the urea cycle; metabolism of inorganic nitrogen. Disorders & Inborn errors of amino acid