THOMAS ADEWUMI UNIVERSITY			
COURSE OUTLINE			
Faculty	Computing and Applied Sciences		
Department	Biological Science		
Course Title	GENERAL BIOCHEMISTRY II		
Year of Study	2		
Course Code	BCH 202		
Credit Hours	2		
Contact Hours	42		
Mode of	Classroom Lectures		
Delivery			
Mode of	Weight%		
Assessment			
Continuous	40%		
Assessment			
Final	60%		
Examination			
Total	100%		
Course	Dr. A.T. Bamigbade		
Lecturer and			
Instructor(s)			
Course	Biochemistry involves the metabolism of macromolecules within the cell or		
Description	living organism. For a biochemistry student, it is important to be familiar with		
	pH meter calibration, and buffer preparation. Again, it is essential to know the		
	basic reactions of carbohydrate, lipid, protein and nucleic acids at the		
	introductory stage.		
Course	This course would enable the understanding of the following:		
Objective and	1. The fundamental meaning of buffers, pH and pKa; amino acids and their role in protain formation		
	2 Classification and chemistry of amino acids proteins and their		
	derivatives		
	3. Introductory chemistry of biomacromolecules such as carbohydrate,		
	lipids and nucleic acids and proteins.		
Learning	By the end of the course, students will be able to:		
Outcomes	1. Calibrate pH meter and prepare buffer solutions		
Guicomes	2. Highlight all the 20 protein-forming amino acids		
	3. Group amino acids into respective classes		

	 Understand how amino acids form peptide bonds and polyp chain Four levels of protein organization Highlight some conjugated proteins Highlight different types of polar and nonpolar lipiids Distinguish between DNA and RNA Highlight basic chemistry of simple sugars Distinguish between storage and structural polysaccharides 	peptide			
Teaching and Learning	The class will meet for 3 hours each week. Class time will be used combination of lecture, classwork and tutorials	for a			
Detailed	pH scale, measurement of pH, buffer, acidity and alkalinity; pH and pKa				
Course Content	values and their effects on cellular activities. Introductory chemistry of amino				
	acid: properties, reactions, and biological functions. Classification of amino				
	acids: neutral, basic, acidic, polar and non-polar; essential and non-essential				
	amino acids. Introductory chemistry of proteins: primary, secondary, tertiary				
	and quaternary structures of proteins; basic principles of test for pr	oteins and			
	amino acids. Introductory chemistry of carbohydrate, lipids and nu	cleic acids.			
	Nomenclature of nucleosides and nucleotides: the DNA; effects of	acid and			
Course Courtout	alkali on hydrolysis of nucleic acids				
Course Content Weeks	Detailed Course Outline	Allowed			
WCCK5	Detaned Course Outline	Time			
Week1	 Measurement of pH, buffer, acidity and alkalinity; pH and pKa values and their effects on cellular activities. Define the term pH Highlight pH range Discuss buffer preparation Explain pH meter calibration Discuss relationship between pH and pKa in buffer solution 	2 Hours			
Week2,3	 0. Classify amino acid Explain the various reactions of amino acid based on classes Explain peptide bond formation Describe and Explain isoelectric point of amino acids 0. Explain the term protein Classify protein Explain conjugated proteins Discuss the four levels of protein organization 0. Continuous assessment I 	8 Hours			

Week4,5,6,	0. Introductory Chemistry of carbohydrates	12 Hours		
Weeks7,8,9	0. Introductory chemistry of lipids	12 Hours		
Week10,11,1	0. Introductory Chemistry of nucleic acid	8 Hours		
2	0. Continuous Assessment II			
After Week	0. Examinations			
12				
Recommended Reading Material				
1. Reginald Garrett and Charles Grisham (2010). <u>Biochemistry.</u> Brooks/Cole, Cengage				
Learning				
2. David Nelson and Michael Cox (2016). <u>Principles of Biochemistry.</u> McGrawHill				
education 2. Vistor Bodyall, David Bondon, Kothleen Bothern, Dater Konnelly, and Anthony Weil				
5. Victor Rouwen, David Bender, Kauneen Botnam, Peter Kenneny, and Anthony Wen				
(2018). <u>Harper's Illustrated Biochemistry</u> . McGrawHill Education Lange				

Course Code: BCH 202 **Course Title**: General Biochemistry II

Preamble: Biochemistry involves the metabolism of macromolecules within the cell or living organism. For a biochemistry student, it is important to be familiar with pH meter calibration, and buffer preparation. Again, it is essential to know the basic reactions of carbohydrate, lipid, protein and nucleic acids at the introductory stage.

Specific Course Objective/Learning Outcomes

This course would enable the understanding of the following:

- 1. The fundamental meaning of buffers, pH and pKa; amino acids and their role in protein formation
- 2. Classification and chemistry of amino acids, proteins and their derivatives
- 3. Introductory chemistry of biomacromolecules such as carbohydrate, lipids and nucleic acids and proteins.
- **B.** Learning Activities/ Course Delivery Methods
- 1. Lectures: Detailed content of course are taught in class
- C. **Course Content:** pH scale, measurement of pH, buffer, acidity and alkalinity; pH and pKa values and their effects on cellular activities. Introductory chemistry of amino acid: properties, reactions, and biological functions. Classification of amino acids: neutral, basic, acidic , polar and non-polar; essential and non-essential amino acids. Introductory chemistry of proteins: primary, secondary, tertiary and quaternary structures of proteins; basic principles of test for proteins and amino acids. Introductory chemistry of carbohydrate, lipids and nucleic acids. Nomenclature of nucleosides and nucleotides: the DNA; effects of acid and alkali on hydrolysis of nucleic acids.